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Abstract

Background: A shift from respiration to fermentation is a common metabolic hallmark of cancer cells. As a result,
glucose and glutamine become the prime fuels for driving the dysregulated growth of tumors. The simultaneous
occurrence of “Press-Pulse” disturbances was considered the mechanism responsible for reduction of organic
populations during prior evolutionary epochs. Press disturbances produce chronic stress, while pulse disturbances
produce acute stress on populations. It was only when both disturbances coincide that population reduction
occurred.

Methods: This general concept can be applied to the management of cancer by creating chronic metabolic
stresses on tumor cell energy metabolism (press disturbance) that are coupled to a series of acute metabolic
stressors that restrict glucose and glutamine availability while also stimulating cancer-specific oxidative stress (pulse
disturbances). The elevation of non-fermentable ketone bodies protect normal cells from energy stress while further
enhancing energy stress in tumor cells that lack the metabolic flexibility to use ketones as an efficient energy
source. Mitochondrial abnormalities and genetic mutations make tumor cells vulnerable metabolic stress.

Results: The press-pulse therapeutic strategy for cancer management is illustrated with calorie restricted ketogenic
diets (KD-R) used together with drugs and procedures that create both chronic and intermittent acute stress on
tumor cell energy metabolism, while protecting and enhancing the energy metabolism of normal cells.

Conclusions: Optimization of dosing, timing, and scheduling of the press-pulse therapeutic strategy will facilitate
the eradication of tumor cells with minimal patient toxicity. This therapeutic strategy can be used as a framework
for the design of clinical trials for the non-toxic management of most cancers.

Keywords: Glucose, Glutamine, Mitochondria, KETONE bodies, Diet, Warburg effect, Cancer metabolism,
Glutaminolysis, Hyperbaric oxygen

Background
According to the paleobiologists, Arens and West, the
simultaneous occurrence of “Press-Pulse” disturbances
was considered the mechanism responsible for the
extinction of organic populations during prior evolution-
ary epochs [1]. A “press” disturbance was considered a
chronic environmental stress on all organisms in an
ecological community. The press disturbance promoted
extinction through habitat loss, reduced reproduction,
and restriction of range and resources. Press distur-
bances would force a biological community into a new
equilibrium where previously important species become

non-viable. A press disturbance would shift the adaptive
landscape to favor the fittest species while eliminating
the weakest species. In contrast to the press distur-
bances, “pulse” disturbances were considered acute
events that disrupted biological communities to produce
high mortality [1]. Through extensive mortality in the
immediate aftermath of the event, a pulse disturbance
could cause extinction. However, survival of some
species could occur following a pulse disturbance, as the
physical and biotic environments would eventually
recover to their pre-disturbance equilibria [1]. It was
only when both the press and the pulse disturbances
coincided that mass extinction of species, without recov-
ery, was possible. We describe how a modification of the
press-pulse concept can be adopted as a therapeutic
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strategy for the possible eradication of tumor cells. The
press-pulse concept should be best considered in light of
current views on the origin of cancer.

The origin of cancer
Cancer is a systemic disease involving multiple time-
and space-dependent changes in the health status of
cells and tissues that ultimately lead to malignant
tumors [2]. Neoplasia involving dysregulated cell growth
is the biological endpoint of the disease [3, 4]. Tumor
cell invasion into surrounding tissues and their spread
(metastasis) to distant organs is the primary cause of
morbidity and mortality of most cancer patients [5–9].
Data from the American Cancer Society show that the
rate of increase in cancer deaths/year (3.4%) was two-
fold greater than the rate of increase in new cases/year
(1.7%) from 2013 to 2017 [10, 11]. Indeed, cancer is pre-
dicted to overtake heart disease as the leading cause of
death in Western societies. The failure to clearly define
the origin of cancer is responsible in large part for the
failure to significantly reduce the cancer death rate from
treatments and in developing cancer prevention
strategies [12].
Cancer is generally considered a genetic disease where

random somatic mutations underlie the origin and pro-
gression of the disease [4, 13–16]. This general view is
now under serious reconsideration in light of major in-
consistencies with the gene theory [2, 3, 12, 14, 17–24].
Emerging evidence from the cancer genome projects
shows that most malignant tumors are remarkably het-
erogeneous [2, 15, 16, 25–27]. This degree of heterogen-
eity will confound attempts to exploit genomic defects
for effective therapies. Moreover, the majority of genetic
mutations are considered downstream epiphenomena
of dysregulated energy metabolism [2, 20, 28]. In con-
trast to the extensive genetic heterogeneity seen in
tumors, most if not all neoplastic cells within tumors
share the common metabolic malady of aerobic fer-
mentation that arises ultimately from dysregulated
oxidative phosphorylation [2, 17, 29–33]. In light of
these findings, cancer can also be recognized as a
metabolic disease.

Methods
Aerobic fermentation: a common metabolic malady of
tumor cells
Most cells of the body oxidize glucose to CO2 and water
for energy production. Before entering the mitochondria
for complete oxidation, glucose is first split into two
molecules of pyruvate through the Embden–Meyerhof–
Parnas glycolytic pathway in the cytosol. As most cells
are bathed in oxygen, the production of pyruvate occurs
through aerobic glycolysis [34]. Under hypoxia, however,
much of the pyruvate is reduced to lactic acid in order

to maintain cell ATP production. Aerobic fermentation,
on the other hand, involves the production of lactic acid
under normoxic conditions. As the Pasteur effect should
reduce lactic acid fermentation under normoxia, persist-
ent lactic acid production in the presence of adequate
oxygen is indicative of abnormal respiration [35]. Otto
Warburg first proposed that all cancers arise from dam-
age to cellular respiration. As a result, cancer cells in-
crease their capacity to produce lactic acid even in the
presence of oxygen in order to compensate for their in-
sufficient respiration [31, 36].
Although Warburg’s hypothesis on the origin of cancer

has created confusion and controversy [37–40], his hy-
pothesis has never been disproved. The Crabtree effect
and the high oxygen consumption rate seen in some
tumor cells have confused the picture of defective oxida-
tive phosphorylation in tumor cells. The Crabtree effect
is an artifact of the in vitro environment and involves
the glucose-induced suppression of respiration with a
corresponding elevation of lactic acid production even
under hyperoxic (pO2 = 120–160 mmHg) conditions as-
sociated with cell culture, [41, 42]. Also, the oxygen con-
sumption seen in tumor cells is not always linked to
ATP production through oxidative phosphorylation and
cannot therefore be used alone as evidence of normal
respiration [29, 43–48]. It can be difficult to accurately
measure mitochondrial respiratory function in cultured
cells unless appropriate controls are used, as the in vitro
environment can alter mitochondrial function [41, 49].
These issues have confounded the interpretation of War-
burg’s findings despite his attempts to clarify the issues
[32, 48, 50]. Nevertheless, the Warburg theory of insuffi-
cient aerobic respiration remains as the most credible
explanation for the origin of tumor cells [2, 37, 51–57].
The main points of Warburg’s theory are; 1) insuffi-

cient respiration is the predisposing initiator of tumori-
genesis and ultimately cancer, 2) energy through
glycolysis gradually compensates for insufficient energy
through respiration, 3) cancer cells continue to produce
lactic acid in the presence of oxygen, and 4) respiratory
insufficiency eventually becomes irreversible [2, 31, 32,
36, 58, 59]. Warburg referred to the phenomenon of en-
hanced glycolysis in cancer cells as “aerobic fermenta-
tion” to highlight the abnormal production of lactic acid
in the presence of oxygen [31, 32, 36, 58, 59]. Efraim
Racker coined the term “Warburg effect”, which refers
to the aerobic glycolysis that occurs in cancer cells [60].
Although Warburg insisted that aerobic glycolysis con-
fuses the issue of insufficient respiration as the origin of
cancer [31, 32], some in the cancer metabolism field
have persisted in thinking that aerobic glycolysis
(Warburg effect) is a central issue in cancer metabolism
[39, 61]. Warburg clearly demonstrated that aerobic fer-
mentation (aerobic glycolysis) is an effect, and not the
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cause, of insufficient respiration [36]. Hence, the target-
ing of fermentable fuels becomes of prime importance
for cancer management.
Substantial evidence exists showing that many cancers

avidly consume glucose and produce lactic acid [62–67].
The diagnostic procedure of 18F-deoxyglucose positron
emission tomography (FDG-PET) is considered evidence
for the elevated use of glucose by some tumors [66].
Elevated glucose consumption would be expected for
any glucose-dependent cell with quantitative or qua-
litative abnormalities in mitochondria, as enhanced fer-
mentation would be needed to compensate for the
insufficient respiration [43, 68]. Indeed, all tumor cells
that have been examined to date contain abnormalities
in the content or composition of cardiolipin, the
signature lipid of the inner mitochondrial membrane
that regulates oxidative phosphorylation [69–74]. Mam-
malian cells containing abnormalities in cardiolipin can-
not respire effectively and will therefore need to increase
energy production through fermentation reactions [41,
70, 73, 75–78]. This fact cannot be overemphasized con-
sidering arguments that tumor cells can have normal
respiration [39, 61, 79]. The expression of immature car-
diolipin linked to reduced Complex I activity in the
inner mitochondrial membrane of tumorigenic and non-
tumorigenic cells suggests that many proliferative cells
grown in culture obtain energy through fermentation ra-
ther than through oxidative phosphorylation despite the
appearance of normal oxygen consumption [41, 43]. The
cardiolipin abnormalities found in tumor cells provide
direct support for Warburg’s central theory. In addition
to cardiolipin abnormalities, Pedersen also showed that
some degree of abnormality could be found in the num-
ber, structure, or function of tumor cell mitochondria
providing further support for Warburg’s theory [68].
The evidence supporting Warburg’s original theory
comes from a broad range of cancers and is now over-
whelming [2, 36, 53, 80–85]. Hence, respiratory insuffi-
ciency, arising from any number mitochondrial defects,
can contribute to the fermentation metabolism seen in
tumor cells.
Although the abnormal energy metabolism and mito-

chondrial abnormalities seen in most cancers could
arise in part through oncogenic modulation of metabol-
ism [4, 39, 86], the data from the nuclear and mito-
chondrial transfer experiments suggest that oncogene
changes are effects, rather than causes, of tumorigen-
esis [2, 14, 24, 87, 88]. Normal mitochondria can sup-
press tumorigenesis, whereas abnormal mitochondria
can enhance tumorigenesis [14, 87]. The results from
these experiments must be viewed together, as results
from any given single experiment are not capable of
overturning the gene theory [14]. Recent advances in
CRISPR/Cas9 technology might help to generate nuclei

with changes in specific tumor-associated genes to fur-
ther evaluate the influence of gene mutations and mito-
chondrial function on tumorigenesis. The acquisition of
dysfunctional mitochondria in macrophages through
fusion hybridization with non-metastatic tumor cells
provides a compelling argument for the origin of those
cancer cells that become metastatic [5, 89–91]. We
recently showed how all of the Hanahan & Weinberg
hallmarks of cancer, including the genomic mutations,
could be linked either directly or indirectly to mito-
chondrial dysfunction [2, 56, 92].

Amino acid fermentation could also drive cancer
metabolism
As the result of insufficient aerobic respiration, cancer
cells must rely primarily on fermentation metabolism to
maintain energy balance and viability. Besides substrate
level phosphorylation in the cytoplasm through lactic
acid fermentation, TCA cycle substrate level phosp-
horylation can also produce significant amounts ATP
[93–98]. In addition to glucose, cancer cells also rely
heavily on glutamine for growth and survival [99–102].
Glutamine is anapleurotic and can be rapidly metabo-
lized to glutamate and then to α-ketoglutarate for entry
into the TCA cycle. In addition to serving as a carbon/
nitrogen source for tumor cell growth, glutamine also
plays a role in cancer cell survival and growth through
enzymatic release of ammonia into the microenviron-
ment [103]. The TCA cycle succinate thiokinase reaction
could generate the majority of cellular ATP through
substrate level phosphorylation under hypoxia or in
tumor cells with defective oxidative phosphorylation
[78]. Mitochondrial ATP production through TCA cycle
substrate level phosphorylation, using glutamine as a
substrate, could give the appearance that mitochondrial
energy metabolism is normal in some cancer cells
especially in combination with oxygen consumption and
CO2 production. Although Warburg did not address the
role of TCA cycle substrate level phosphorylation in his
original work [31, 36], an increase in TCA cycle sub-
strate level phosphorylation would be expected in cells
with OxPhos deficiencies, just as lactic acid fermentation
is expected in cells with this deficiency. Further studies
will be needed to substantiate the role of glutamine
fermentation in cancer cells.
Glucose and glutamine act synergistically for driving

rapid tumor cell growth. Glutamine metabolism can
produce ATP from the TCA cycle under aerobic condi-
tions. Glutamine is also a nitrogen donor for nucleotide
biosynthesis and can serve as precursor for lipid synthe-
sis under hypoxic conditions [104, 105]. We also found
that only minor amounts of glutamine are metabolized
to lactic acid under either normoxia or hypoxia in the
VM-M3 invasive glioblastoma cells consistent with
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findings in other tumor cells [105–107]. We suggest that
the metabolism of glucose and glutamine for energy will
depend on the physiological state of the tumor mi-
croenvironment, and will be of greater significance in
tumors with an aggressive Warburg phenotype. We found
that glutamine targeting can be effective in managing sys-
temic metastatic cancer in the VM/Dk mice [108].
Amino acid fermentation can generate energy through

TCA cycle substrate level phosphorylation under hyp-
oxic conditions [94, 96, 97, 109, 110]. Succinate is a
waste product of amino acid fermentation that can en-
hance inflammation as well as inhibit a family of prolyl
hydroxylases, which facilitate Hif-1α degradation through
the von Hippel–Lindau (VHL) gene product [111–113].
Through its action on several glycolytic pathways, Hif-1α
stabilization enhances aerobic fermentation [114–116]. It
can be difficult to determine, however, the degree to which
mitochondrial ATP production in tumor cells arises from
coupled respiration or from TCA cycle substrate level
phosphorylation [94, 98].
Several byproducts of amino acid fermentation can

also accumulate in the tumor microenvironment in-
cluding acetate, glutamate, alanine, succinate, and am-
monia. Although acetate has been considered a
potential fuel for supporting tumor cell growth [117,
118], acetate levels are generally low in the circulation
[119]. Jaworski et al. recently provided a comprehen-
sive discussion on the potential role of acetate in
tumor metabolism [120]. It should be recognized that
with the exception of glucose and glutamine, none of
the other potential fuels needed for tumor cell fer-
mentation would likely be available in sufficient quan-
tities to drive robust tumor cell growth. As many
amino acids are synthesized from glucose and glutam-
ine, targeting glucose and glutamine will deprive the
microenvironment of fermentable fuels. Hence, the re-
striction of glucose and glutamine becomes of prime
importance for targeting tumor cell growth and sur-
vival. The role of glucose and glutamine in driving
tumor cells energy metabolism is shown in Fig. 1.

Tumor cell energy metabolites from cannibalism and
phagocytosis
Emerging evidence indicates that macrophages, or their
fusion hybridization with neoplastic stem cells, are the
origin of metastatic cancer cells [5, 89, 121–124]. Radi-
ation therapy can enhance fusion hybridization that
could increase risk for invasive and metastatic tumor
cells [91, 125]. Cannibalism and phagocytosis of cellular
debris are well known characteristics of macrophages
and of myeloid cancer cells with macrophage properties
[121, 126–131]. Shelton showed that glioblastoma cells
with myeloid properties could survive in Matrigel (extra-
cellular matrix material) in the absence of added glucose

and glutamine [132]. The gradual accumulation of
lactate in the media suggested that the glioblastoma cells
survived through lysosomal digestion and aerobic fer-
mentation of glycoconjugates present in the Matrigel.
Glioblastoma cell death occurred immediately following
the addition of chloroquine, which neutralizes lysosomal
acidity and digestion [132]. Shelton’s findings are
consistent with the more recent findings of Kamphorst
et al. in showing that pancreatic ductal adenocarcinoma
cells could obtain glutamine under nutrient poor con-
ditions through lysosomal digestion of extracellular
proteins [133]. It will therefore become necessary to also
target lysosomal digestion, under reduced glucose and
glutamine conditions, to effectively manage those in-
vasive and metastatic cancers that express cannibalism
and phagocytosis.

Genome integrity and energy metabolism
Emerging evidence indicates that the function of DNA
repair enzymes and the integrity of the nuclear genome
are dependent to a large extent on the energy derived
from normal respiration [134–142]. Previous studies in
yeast and mammalian cells show that disruption of
aerobic respiration can cause mutations (loss of hetero-
zygosity, chromosome instability, and epigenetic modifi-
cations etc.) in the nuclear genome [28, 141, 143, 144].
A protracted reliance on fermentation causes oxidative
stress leading to the production of reactive oxygen spe-
cies (ROS) mostly through the mitochondrial coenzyme
Q couple [145]. In addition to their role in oncogenic sig-
naling, excess ROS production damages mitochondrial
function, and can be both carcinogenic and mutagenic
[146, 147]. The somatic mutations and genomic instability
seen in tumor cells thus arise from a protracted reliance
on fermentation energy metabolism and a disruption of
redox balance through excess oxidative stress.
We recently discussed how a transition from respir-

ation to fermentation could account for Szent-Gyorgi’s
“Oncogenic Paradox”, i.e., the process by which various
provocative agents (radiation, inflammation, hypoxia,
carcinogenic chemicals, age, germline mutations, etc.)
could produce cancer through a common pathological
mechanism [2, 148]. Mukherjee and Cairns also strug-
gled to explain the oncogenic paradox [149, 150]. All of
these provocative cancer-causing agents damage respir-
ation thus forcing the cells to rely more heavily on
energy generated through fermentation for survival.
According to the mitochondrial metabolic theory of
cancer, the large genomic heterogeneity seen in tumor
cells arises as a consequence, rather than as a cause, of
mitochondrial dysfunction [2, 14, 28]. A therapeutic
strategy targeting the metabolic abnormality common to
most tumor cells should therefore be more effective in
managing cancer than would a strategy targeting genetic
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mutations that vary widely between tumors of the same
histological grade and even within the same tumor.

Human evolution and adaptive versatility
Rick Potts, a paleoanthropologist at the Smithsonian
Institution, suggested that the evolutionary success of
our species has been due largely to the germline inhe-
ritance of traits that bestowed adaptive versatility

[151–153]. Adaptability was defined in terms of, 1)
the ability of an organism to persist through major
environmental shifts, 2) to spread to new habitats,
and 3) to respond in novel ways to its surroundings
[153]. These characteristics were honed over millions
of years and enabled humans to adapt rapidly to abrupt
changes in the physical environment including changes in
moisture, temperature, food resources etc. Adaptability to

Fig. 1 Targeting Glucose and Glutamine for the Metabolic Management of Cancer. Cancer cells are largely dependent on glucose and glutamine
for survival and growth. Energy through fermentation metabolism (substrate level phosphorylations, SLP) in glycolysis and the tricarboxylic acid
cycle (TCA) will compensate for reduced energy through oxidative phosphorylation (OxPhos) that occurs in tumor cells. The yellow ovals indicate
the three source of cellular ATP production. Glucose carbons can be used for both the glycolytic and pentose phosphate (PPP) pathways to
supply ATP and precursors for lipid and nucleotide synthesis, as well as for glutathione production. Glutamine provides its amide nitrogen for
ammonia and nucleotide synthesis. The glutamine-derived glutamate provides anapleurotic carbons to the TCA cycle through α-KG for protein
synthesis while also providing ATP through TCA cycle SLP. TCA cycle substrate level phosphorylation through the succinate thiokinase reaction
can generate significant cellular ATP under hypoxia especially in tumor cells with defective respiration [78]. The glutamine-derived glutamate is
also used for glutathione production that protects tumor cells from oxidative stress. Glucose and glutamine targeting will thus make cancer cells
vulnerable to oxidative stress therapies. The simultaneous targeting of glucose and glutamine through the press-pulse therapeutic strategy will
starve tumor cells of energy production while blocking their ability to synthesize proteins, lipids, and nucleotides. Glucose and glutamine can also
be generated internally through the lysosomal digestion of phagocytosed glycoconjugates and proteins (see text). An elevation of non-fermentable
ketone bodies through, calorie restriction, ketogenic diets, or supplementation will provide normal cells with an alternative energy source to glucose
while also protecting them from oxidative stress. Ghost mitochondria are those containing little or no inner mitochondrial membranes (cristae), which
are essential for normal OxPhos function [67, 282, 283]
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abrupt environmental change is a property of the genome,
which was selected for in order to ensure survival under
environmental extremes [65, 154].
Potts’ hypothesis is an extension of Darwin’s original

theory (Chapter IV, Natural Selection) and can be applied
to the individual cells of the organism, which exist as an
integrated society of cells [65, 154]. The success in dealing
with environmental stress and disease is therefore
dependent on the integrated action of all cells in the
organism. Further, this integrated action depends on the
flexibility of each cell’s genome, which responds to both
internal and external signals according to the needs of the
organism. More specifically, only those cells possessing
flexibility in nutrient utilization will be able to survive
under nutrient stress. Environmental forcing has therefore
selected those genomes most capable of adapting to
change in order to maintain metabolic homeostasis
[65, 152, 153, 155]. This concept was first discussed
in relationship to the management of brain cancer [65].
The widely held notion that tumor cells have a growth

advantage and are more fit than normal cells are in con-
trast to Darwin’s theory of evolution and also to Potts’
theory of adaptive versatility [65, 153, 154]. It is difficult
to conceive how a random accumulation of somatic
mutations could enhance the adaptability and fitness of
cancer cells. It is important to recognize that mutations
in p53, K-Ras, and Raf impact negatively on mitochon-
drial energy efficiency thus making cells with these
mutations less metabolically flexible than normal cells
[28, 44, 53, 135, 156–159]. Indeed activating mutations
in K-Ras target mitochondria, thus enhancing glycolysis
[53, 160]. Enhanced glycolysis will make tumor cells
appear more metabolically fit than normal cells in hyp-
oxic environments [161, 162]. Most normal cells, how-
ever, cannot grow in hypoxia and will often die in
hypoxic environments due to respiratory failure. Tumor
cells are more fit than normal cells to survive in the hyp-
oxic niche of the tumor microenvironment. Hypoxic
adaptation of tumor cells allows for them to avoid apop-
tosis due to their metabolic reprograming following a
gradual loss of respiratory function [31, 32, 162, 163].
The high rates of tumor cell glycolysis and glutaminoly-
sis will also make them resistant to apoptosis, ROS, and
chemotherapy drugs [163]. Despite having high levels of
ROS, glutamate-derived from glutamine contributes to
glutathione production that can protect tumor cells from
ROS [164]. As long as the tumor cells have access to the
metabolic fuels needed for glycolysis and TCA cycle sub-
strate level phosphorylation (glucose and glutamine, re-
spectively) they will give the appearance of having a growth
advantage over most normal cells [2]. According to Darwin
and Potts, mutations that bestow a selective advantage are
those that will enhance survival under environmental stress.
If the multiple pathogenic point mutations, chromosomal

rearrangements, and mitochondrial abnormalities confer a
fitness or survival advantage to tumor cells, then survival
under environmental stress and nutrient deprivation
should be better in tumor cells than in normal cells
[165]. This is not what actually happens, however,
when the hypothesis is tested.
For example, when mice or people with tumors are

placed under energy stress using dietary energy re-
duction (glucose restriction), many tumor cells die while
normal cells survive. Indeed, the health and vitality of
the normal cells improves with time under dietary energy
reduction while hyper-glycolytic tumor cells undergo
energetic crisis triggering apoptotic death [166, 167]. Sup-
port for this contention comes from studies of treating
brain tumors with dietary energy stress [114, 168–174]. It
is clear that adaptability to environmental stress is greater
in normal cells than in tumor cells, as normal cells can
transition from the metabolism of glucose to the metabol-
ism of ketone bodies when glucose becomes limiting.
Mitochondrial oxidative phosphorylation is less robust in
tumor cells than in normal cells while glucose utilization
through lactic acid fermentation is greater in tumor cells
than in normal cells. Targeting glucose availability will
therefore cause greater death in the tumor cells than in
the normal cells. Mitochondrial respiratory chain defects
will prevent tumor cells from using ketone bodies for
energy [145]. Consequently, glycolysis-dependent tumor
cells are less adaptable to metabolic stress than are the
normal cells. This vulnerability can be exploited for target-
ing tumor cell energy metabolism [160, 163].
It is also possible that therapeutic energy stress could

restore the microenvironment thus reversing abnormal
energy metabolism and growth behavior in tumor cells
not containing genetic mutations [19, 175]. In contrast
to dietary energy reduction, radiation and toxic drugs
can damage the microenvironment and transform nor-
mal cells into tumor cells while also creating tumor cells
that become highly resistant to drugs and radiation.
Drug-resistant tumor cells arise in large part from the
damage to respiration in bystander pre-cancerous cells.
These cells are often those that eventually become heav-
ily dependent on fermentation for energy.
The greater adaptability of normal cells than tumor

cells to energy stress is predicted based on the theories
of Darwin and Potts [154]. Metabolic flexibility allows
the organism to respond in a coordinated way to envir-
onmental stress and limited substrate availability. Energy
stress will force all normal cells to work together for the
survival of the organism [154]. Pathogenic mutations and
genomic instability will reduce adaptability and metabolic
flexibility under energy stress. The greater the genomic
instability in tumor cells, the less will be their adapt-
ability to stress. This concept is similar to that of Now-
ell’s except in viewing genomic instability as a liability

Seyfried et al. Nutrition & Metabolism  (2017) 14:19 Page 6 of 17



rather than as an advantage to progression [154, 176].
Because energy generated through substrate level phos-
phorylation is greater in tumor cells than in normal
cells, tumor cells are more dependent than normal cells
on the availability of fermentable fuels (glucose and
glutamine) [94]. With few exceptions, most normal
cells shift energy metabolism from glucose to ketone
bodies and fats when placed under energy stress from
glucose deprivation, insulin deficiency, and prolonged
fasting. This shift is the result of adaptive versatility
and genomic stability, which is lacking in the tumor
cells but is prominent in cells and tissues with robust
mitochondrial function.
Tumor cells will have difficulty surviving and grow-

ing, regardless of their complement of genomic
changes, if fermentable fuels become restricted in the
microenvironment. Ketone bodies and fats are non-
fermentable fuels [177]. Tumor cells have difficulty
using ketone bodies and fats for fuel when glucose is
reduced [57, 178–180]. Although some tumor cells
might appear to oxidize ketone bodies by the pres-
ence of ketolytic enzymes [181], it is not clear if
ketone bodies and fats can provide sufficient energy
for cell viability in the absence of glucose and glu-
tamine. The studies in immunocompetent syngeneic
mice and xenografts with brain tumors are proof of
concept that tumor cells are less adaptable than nor-
mal cells when placed under energy stress [114, 170,
171, 182–184]. Apoptosis under energy stress is
greater in tumor cells than in normal cells [170]. The
multiple genetic defects in tumor cells will reduce gen-
omic flexibility thus increasing the likelihood of cell death
under environmental stress that would lower glucose and
elevate ketone bodies. Regardless of when or how genomic
defects become involved in the initiation or progression of
tumors, these defects can be exploited for tumor manage-
ment or resolution [12].

Results
Press-pulse: a therapeutic strategy for the gradual
elimination of cancer cells
Mark Vincent suggested how a Press-Pulse strategy
could be used to target tumor cells [185]. We have now
expanded this concept to show how a press-pulse
therapeutic strategy can be used for the non-toxic man-
agement and possible resolution of cancer. A calorie
restricted ketogenic diet or dietary energy reduction
creates chronic metabolic stress in the body. This en-
ergy stress acts as a press disturbance; the effects of
which would be greater in the tumor cells than in the
normal cells due to their dependency on fermentation
energy metabolism, mitogens, anabolic signaling (IGF-
1, mTOR, etc.), elevated redox stress, and mutational
load. Drugs that target availability of glucose and

glutamine would act as pulse disturbances in causing
an acute reduction of these tumor-dependent fuels
[186]. Hyperbaric oxygen therapy can also be consid-
ered another pulse disturbance in elevating ROS to a
greater degree in tumor cells than in normal cells, thus
promoting cancer cell death through redox stress [40].
Normal cells readily transition to ketone body metabol-
ism for protection against ROS damage and oxidative
stress. The goal therefore is to produce a therapeutic
strategy that can more effectively manage cancer than
can the toxic cancer therapies currently used in most
standards of care. The following examples illustrate the
potential of press-pulse therapeutic strategies for can-
cer management.

Calorie restriction and restricted Ketogenic diets: a press
disturbance
Calorie restriction, water-only fasting, and restricted
ketogenic diets reduce circulating glucose and insulin
levels while elevating circulating levels of ketone bodies.
Ketogenic diets (KDs) are low carbohydrate-high fat
diets that are widely used to reduce refractory epileptic
seizures in children [187, 188]. The KD can more effect-
ively reduce glucose and elevate blood ketone bodies
than can CR alone making the KD potentially more
therapeutic against tumors than CR [174, 189, 190]. The
protein and fat composition of the KD differs from that
of Atkins-type diets in having comparatively less protein
and more fat than the Atkins diets. This is important as
several amino acids found in proteins can be deaminated
to form pyruvate, which can then be metabolized to
form glucose through gluconeogenesis [191]. Campbell
showed that tumor growth in rats is greater under high
protein (>20%) than under low protein content (<10%)
in the diet [192]. Protein amino acids can be metabo-
lized to glucose through the Cori cycle. The fats in KDs
used clinically also contain more medium chain triglyc-
erides than do Atkins diets. Consequently, blood glucose
levels will be lower and ketone body levels will be higher
with KDs than with Atkins-type diets. Calorie restric-
tion, fasting, and restricted KDs are anti-angiogenic,
anti-inflammatory, and pro-apoptotic and thus can
target and eliminate tumor cells through multiple mech-
anisms [114, 166, 171, 174, 182, 193, 194]. Ketogenic
diets can also spare muscle protein, enhance immunity,
and delay cancer cachexia, which is a major problem in
managing metastatic cancer [195–198].
The therapeutic effects of KDs used alone or in com-

bination with other therapies have been documented in
preclinical studies for several cancer models including
neuroblastoma [199, 200], lung cancer [201], prostate
cancer [202, 203], breast and ovarian cancers [204, 205],
head & neck cancers [204], colon cancer [206], and
pancreatic cancer [198]. These preclinical studies are
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also motivating case reports and pilot studies in humans
with brain cancer and other cancers [169, 181, 207–
214]. It is clear from these studies and other studies in
children and adults with cancer that KDs are generally
safe and well tolerated [168, 212, 213, 215–217], These
observations are also consistent with decades of research
obtained from evaluation of children treated with KDs
for epilepsy management [218]. Information on keto-
genic diets can be obtained from the Charlie Foundation
web site (https://www.charliefoundation.org).
We recently developed the Glucose/Ketone Index

calculator (GKIC) to assess the potential therapeutic
effects of various low-carbohydrate and KDs for brain
cancer management [189]. The GKIC is a simple tool
that measures the ratio of blood glucose to blood ke-
tones and can help monitor the efficacy of metabolic
therapy in preclinical animal models and in clinical trials
for malignant brain cancer or for any cancer that ex-
presses aerobic fermentation. GKI values of 1.0 or below
are considered therapeutic, though therapeutic benefit
appears to be associated more with elevated ketone bod-
ies and suppression of insulin than with reduced glucose
[190, 215]. However, the elevation of ketone body levels
is generally greater when blood glucose levels are lower
than when glucose levels are higher [174, 219, 220]. The
GKI can therefore serve as a biomarker to assess the
therapeutic efficacy of various diets in a broad range of
cancers.
Reduced glucose availability and suppression of insulin

signaling will produce chronic energy stress on those
tumor cells that depend primarily on glucose for growth
and survival. It is important to remember that insulin
drives glycolysis through stimulation of the pyruvate
dehydrogenase complex [221, 222]. Reduced levels of
glucose will also reduce substrates for both the glycolytic
and the pentose phosphate pathways thus reducing
cellular energy, and the synthesis of glutathione and
nucleotide precursors (Fig. 1).
The water-soluble ketone bodies (D-β-hydroxybutyrate

and acetoacetate) are produced largely in the liver from
adipocyte-derived fatty acids and ketogenic dietary fat.
Ketone bodies bypass glycolysis and directly enter the
mitochondria for metabolism to acetyl-CoA [223]. In
contrast to fatty acid metabolism, which generates both
NADH and FADH2, ketone body metabolism generates
only NADH [145]. Moreover, ketone body metabolism
does not induce mitochondrial uncoupling in contrast to
metabolism of saturated fatty acids [145]. The metabol-
ism of D-β-hydroxybutyrate in normal cells will there-
fore increase the redox span between Complexes I and
III, thus increasing the delta G’ of ATP hydrolysis while,
at the same time, reducing ROS formation through the
Complex II coenzyme Q couple [224, 225]. Due to mito-
chondrial defects, tumor cells cannot exploit the

therapeutic benefits of burning ketone bodies as normal
cells would. Indeed, racemic mixtures of D-/L-ketone
bodies can be toxic to tumor cells under both low and
high glucose conditions [57, 190]. Fine et al. found that
uncoupling protein 2 is overexpressed in tumor cells,
but not in normal control cells [226]. This finding pro-
vides a plausible molecular mechanism by which ketone
bodies spare normal cells but suppresses growth in can-
cer lines.
In contrast to D-β-hydroxybutyrate, L-β-hydroxybutyrate

is beta-oxidized thus producing both NADH and FADH2.
FADH2 will deliver electrons to Complex III, which can in-
crease the semiquinone of Q, the half-reduced form. The Q
semiquinone will react with molecular oxygen to form the
superoxide O2

.- free radical [145]. Therapeutic ketosis with
racemic ketone esters can also make it feasible to safely
sustain hypoglycemia for inducing metabolic stress on can-
cer cells [227]. Hence, mixtures of L- and D-ketone esters
have the potential to both enhance oxidative stress in
tumor cells while reducing oxidative stress in normal cells,
respectively [145, 228]. There is also evidence showing that
ketone bodies can inhibit histone deacetylases (HDAC)
[229]. HDAC inhibitors play a role in targeting the cancer
epigenome [230]. Deregulated inflammation is also consid-
ered to be one of the hallmarks of cancer. Therapeutic
ketosis reduces circulating inflammatory markers, and
ketones directly inhibit the NLRP3 inflammasome, an
important pro-inflammatory pathway linked to carcinogen-
esis and an important target for cancer treatment response
[231]. There are no adverse side effects of short-term thera-
peutic ketosis, but relatively mild adverse effects have been
noted in some children with epilepsy after long-term use of
ketogenic diets including constipation, kidney stones, elec-
trolyte imbalances, and bone fracture [218]. These adverse
effects were easily managed with various supplements and
pale in comparison to the adverse effects produced from
current standards of care [232]. In general, there are no
currently known cancer drugs that embody the therapeutic
properties of ketone bodies.

Psychological stress reduction: a press disturbance
Chronic psychological stress is known to promote tumori-
genesis through elevations of blood glucose, glucocorti-
coids, catecholamines, and insulin-like growth factor
(IGF-1) [233, 234]. In addition to calorie-restricted keto-
genic diets, psychological stress management involving ex-
ercise, yoga, music etc. also act as press disturbances that
can help reduce fatigue, depression, and anxiety in cancer
patients and in animal models [235–238]. Ketone supple-
mentation has also been shown to reduce anxiety behavior
in animal models [239]. The mechanism of action of
psychological stress management for cancer control would
largely involve reductions in blood glucose levels that
contribute to tumor growth.
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Restricted ketogenic diet used with 2-Deoxyglucose
Calorie restriction or therapeutic fasting is anti-angiogenic,
anti-inflammatory, and pro-apoptotic, and thus targets
multiple cancer hallmarks [114, 166, 167, 170, 171, 182,
240–243]. This physiological state also enhances the effi-
cacy of chemotherapy and radiation therapy, while redu-
cing the side effects [244–246]. Indeed, lower dosages of
chemotherapeutic drugs can be used when administered
together with calorie restriction or restricted ketogenic di-
ets (KD-R). We showed a synergistic interaction between a
KD-R and the glycolysis inhibitor 2-deoxyglucose (2-DG)
for the metabolic management of the syngeneic CT-2A
malignant mouse glioma [247]. It was interesting to find
that 2-DG (25 mg/kg) had no therapeutic effect on
CT-2A tumor growth when administered alone to
mice on a standard high carbohydrate diet, but had a
powerful therapeutic effect when administered with a
KD-R. Indeed, this relatively low dose of 2-DG be-
came somewhat toxic when used with the KD sug-
gesting that lower dosing of some tumor-targeting
drugs could also be effective when administered with
KD-R. Besides 2-DG, a range of other glycolysis
inhibitors might also produce similar therapeutic
effects when combined with the KD-R including 3-
bromopyruvate, oxaloacetate, and lonidamine [58, 186,
248–250]. In the example here the KD-R is the press
making cancer cells selectively vulnerable to death
and the 2-DG is the pulse, which could be used inter-
mittently or cycled to avoid toxicity.

Ketogenic diet used with radiation therapy
Adrienne Scheck and colleagues showed that the thera-
peutic efficacy of radiotherapy against the orthotopically
grown GL261 mouse glioma could be greatly enhanced
when combined with a commercially available ketogenic
diet [183]. Mice fed the KetoCal ketogenic diet had ele-
vated levels of β-hydroxybutyrate and an increased
median survival of approximately 5 days relative to
animals maintained on a high-carbohydrate standard
diet alone. A synergistic interaction of the KD diet plus
radiation was seen, as no bioluminescent signal was
detected in 9 of 11 that received the combined treat-
ment. Furthermore, no signs of tumor recurrence were
seen for over 200 days when the treated mice were
switched to the SD 101 days after tumor implantation.
These findings suggest tumor resolution in some of the
mice treated with the combined therapy. In this ex-
ample, the KD is the press and radiotherapy is the pulse.
It is important to recognize, however, that the radiother-
apy used in glioma patients can damage the respiration
of normal cells and increase availability of glutamine in
the microenvironment, which can increase risk of tumor
recurrence especially when used together with the
steroid drug dexamethasone [31, 251–253].

A Ketogenic diet used with hyperbaric oxygen therapy
Poff and colleagues demonstrated that hyperbaric oxy-
gen therapy (HBOT) enhanced the ability of the KD to
reduce tumor growth and metastasis [40]. Evidence in
animal models and in humans suggests that HBOT may
have a modest anti-cancer effect when used alone [254],
but appears most efficacious when it is used in combin-
ation with standard care. Indeed, HBOT has proven
effective when used prior to radiation therapy for GBM
[255]. The mechanism of HBOT in tumor management
is not yet clear, but saturating the tumor with oxygen
could reverse hypoxia and suppresses growth [254, 256]
HBOT also increases oxidative stress and membrane
lipid peroxidation of GBM cells in vitro [257]. The
effects of the KD and HBOT can be enhanced with
administration of exogenous ketones, which further sup-
pressed tumor growth and metastasis [190]. Besides
HBOT, intravenous vitamin C and dichloroacetate
(DCA) can also be used with the KD to selectively
increase oxidative stress in tumor cells [258, 259].
Recent evidence also shows that ketone supplementa-
tion may enhance or preserve overall physical and
mental health [260, 261], which are often com-
promised due to disease progression and standard of
care therapies. Under these conditions the KD with
exogenous ketones serve as the press, while HBOT
serves as the pulse. Although HBOT and radiotherapy
kill tumor cells through oxidative stress, HBOT is less
toxic to normal cells than is radiotherapy.

Calorie restriction used with glutamine targeting for
metastatic cancer
Some tumors use glucose as a prime fuel for growth,
whereas other tumors use glutamine as a prime fuel
[102, 186, 262–264]. Glutamine-dependent tumors are
generally less detectable than glucose-dependent under
FDG-PET imaging, but could be detected under
glutamine-based PET imaging [265]. Glutamine target-
ing should have therapeutic benefit against those tumors
that depend on glutamine for growth and survival. We
found that the highly metastatic VM-M3 tumor cells are
dependent primarily on availability of glutamine for
growth and ability to spread systemically [108]. The glu-
taminase inhibitor DON (6-diazo-5-oxo-L-norleucine)
has shown therapeutic benefit in the clinic, as long as
toxicity can be managed [186, 266]. DON could work
best when combined with inhibitors of glycolysis such as
lonidamine [186]. In addition to DON, other glutamine
inhibitors ((bis-2-(5-phenylacetamido-1,2, 4-thiadiazol-2-
yl)ethyl sulfide, BPTES, or CB-839) could also be thera-
peutic in targeting glutamine-dependent tumors [267].
A greater attention to possible adverse effects will be
needed for glutamine targeting than for glucose tar-
geting, as glutamine is involved with several essential
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physiological functions especially for cells of the im-
mune system [268, 269]. It might therefore be necessary
to also periodically schedule glutamine supplementa-
tion with glutamine targeting to obtain maximum
therapeutic benefit while protecting immune system
function.
The VM-M3 tumor is an excellent model system

for evaluating the role of glutamine as a metabolic
driver of invasive and metastatic cancer. The VM-M3
tumor arose spontaneously in the brain of its syngen-
eic immunocompetent VM/Dk inbred mouse host
[270]. The tumor was classified as a glioblastoma
(GBM) based on histological appearance, invasive
growth behavior in brain, and systemic metastasis
when give access to extraneural sites [271–277]. The
neoplastic VM-M3 tumor cells share several charac-
teristics with mesenchymal microglia/macrophages,
which are abundant in GBM and use glutamine as a

major fuel [278, 279]. Although calorie restriction
could partially reduce distal invasion of VM-M3
tumor cell in brain and reduce primary tumor growth
in flank, CR did not prevent systemic metastasis des-
pite causing reduction in blood glucose and elevation
of ketone bodies [108, 280]. However, DON had a
major effect in reducing both primary tumor size and
systemic metastasis indicative of the importance of
glutamine in driving this tumor [108]. A synergistic
interaction was also seen when DON was combined
with calorie restriction [281]. Modifications of DON
scheduling, timing, and dosing would be needed to
improve efficacy and reduce toxicity. In this example,
CR is the press and DON is the pulse. As glutamine
is a major fuel of immune cells, glutamine targeting
should be effective in reducing most metastatic can-
cers that have characteristics of macrophages and
other immune cells [121].

Fig. 2 Illustration of the Press-Pulse Therapeutic Strategy for Cancer Management. The “Press-Pulse” therapeutic strategy considers cancer as a
singular systemic disease regardless of the specific tissue or organ system containing invasive or metastatic tumor cells. This strategy is designed
to target the glucose and glutamine dependency of tumor cells, while enhancing the metabolic efficiency in normal cells. Press therapies are
designed to reduce systemic glucose availability while elevating blood levels of ketone bodies, which tumor cells cannot effectively use for
energy generation. This approach pits the metabolic demands of normal cells against those of the mutated tumor cells, which are less capable
than normal cells in adapting to metabolic stress from nutrient deprivation. Ketone body supplements could further reduce glucose levels while
enhancing the respiratory energy metabolism in normal cells. Stress management techniques together with exercise could further stress tumor
cell metabolism while improving general health. The press therapies would be designed to work synergistically with acute pulse therapies to
further target glucose and glutamine metabolism. HBOT will work together with the press therapies to selectively increase oxidative stress in
tumor cells. The spacing between the various pulse therapies is designed to stress tumor cell metabolism while minimizing toxicity to normal
body cells. This therapeutic strategy will target the fermentation metabolism common to most tumor cells, thus gradually degrading tumor
burden. The progressive color change in the Vitruvian man drawing from red (diseased with darker red spots indicative of metastatic lesions),
to yellow (reduced metastasis), to green (resolution) symbolizes a gradual metabolic management and resolution of cancer. The pill symbol is
indicative of glycolysis targeting that could be delivered orally. The Rx symbol is indicative of glutamine targeting that could be delivered
intravenously. Pulse therapies would terminate with evidence of management or resolution while press therapies could continue under
modification or adjustment (arrow). Optimization of dosing, timing, and scheduling of the press-pulse therapeutic strategy will facilitate the
eradication of tumor cells with minimal patient toxicity. This therapeutic strategy can be used as a framework for the design of clinical trials for
the majority of cancers. HBOT, hyperbaric oxygen therapy; KD-R, calorie restricted ketogenic diet
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Optimization of scheduling, timing, and dosing
The success of the press-pulse therapeutic strategy for
the metabolic management of cancer will depend on
optimization of the scheduling, dosing, and timing of
the various diets, drugs, and procedures used in order to
achieve maximum synergistic interactions (Fig. 2).
Scheduling will involve the order in which the chosen
pulses are delivered to the subject while under dietary
therapy. Timing will determine when and for how long
the presses and pulses are given (number/day,/week,/
month etc.). Dosing will identify the optimal drug dos-
ages needed to kill tumor cells while preventing or min-
imizing systemic toxicity. Scheduling for each of these
variables can be adjusted for the age, sex, and general
health status of the subject. The strategy should degrade
tumor cell populations gradually to prevent tumor lysis
syndrome, which could cause excessive toxicity. Tumor
imaging procedures involving FDG-PET, magnetic reson-
ance imaging (MRI), and computed tomography perfusion
(CTP), as well as analysis of serum cancer biomarkers
should be helpful in assessing therapeutic success. The
goal of the press-pulse therapeutic strategy is to improve
progression-free and overall survival from cancer without
producing adverse effects from the treatment.

Discussion & Conclusions
Many of the current treatments used for cancer manage-
ment are based on the view that cancer is a genetic dis-
ease. It is clear from the cancer death statistics that most
current therapies are wanting in their ability to reduce the
yearly death rate or to manage the disease without
toxicity. Emerging evidence indicates that cancer is a
mitochondrial metabolic disease that depends on availabil-
ity of fermentable fuels for tumor cell growth and survival.
Glucose and glutamine are the most abundant ferment-
able fuels present in the circulation and in the tumor
microenvironment. The press-pulse therapeutic strategy is
designed to target availability of glucose and glutamine
thus starving tumor cells of their most important fuels
and increasing their vulnerability to oxidative stress and
apoptotic death. Low-carbohydrate, high fat-ketogenic
diets coupled with glycolysis inhibitors will reduce meta-
bolic flux through the glycolytic and pentose phosphate
pathways needed for synthesis of ATP, lipids, glutathione,
and nucleotides. DON and other similar glutamine inhibi-
tors will deprive proliferating tumor cells of the glutamine
needed for TCA cycle anaplerosis, and synthesis of gluta-
thione, nucleotides, and proteins. Lysosomal targeting
with chloroquine or similar drugs will reduce glucose and
glutamine production following digestion of phagocytosed
glycoconjugates and proteins. Glutamine targeting will
require careful adjustments, however, as glutamine is a
key metabolite needed for the immune system and for
other physiological functions. Hyperbaric oxygen therapy

combined with the calorie restricted ketogenic diet will
kill tumor cells through apoptotic and anti-angiogenic
mechanisms while also reducing inflammation in the
tumor microenvironment and systemically. It is our
view that the “Press-Pulse” paradigm is a compelling
and parsimonious therapeutic strategy for effectively
managing the vast majority of malignant cancers with
minimal toxicity, as this approach will target the major
energy pathways responsible for tumor cell growth and
survival while enhancing the energetic efficiency of
normal body cells and tissues.

Abbreviations
2-DG: 2-deoxyglucose; CR: Calorie restriction; DON: 6-diazo-5-oxo-L-
norleucine; FAD: Flavin adenine dinucleotide; GBM: Glioblastoma multiforme;
GKI: Glucose Ketone Index; HBOT: Hyperbaric oxygen therapy; KD-
R: Restricted Ketogenic Diet; NAD: Nicotinamide adenine dinucleotide;
ROS: Reactive Oxygen Species; SLP: Substrate level phosphorylation;
TCA: Tricarboxylic acid

Acknowledgements
We would also like to thank Zachary Augur and Michael Pool for technical
assistance, Drs. Purna Mukherjee, Angela Poff, and Andrew Koutnik for
valuable comments, and the late Madam Trudy Dupont for providing us
with valuable information and insight on the human experience of
metabolic therapy for brain cancer management.

Funding
Single Cause, Single Cure Foundation, the George Yu Foundation, Dave
Woynarowski, Ellen Davis, Lewis Topper, the Boston College Research.
Expense Fund, the Nelson and Claudia Peltz Foundation, and the
Boston.College Biology Department Cancer Fund, and Scivation.

Availability of data and material
Data sharing not applicable to this article as no datasets were generated or
analyzed during the current study.

Authors’ contributions
TNS wrote most of the manuscript with the assistance of DPD, GY, and JCM.
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
NA.

Ethics approval and consent to participate
NA.

Author details
1Biology Department, Boston College, Chestnut Hill, MA 02467, USA. 2George
Washington University Medical Center Washington DC, and Aegis Medical &
Research Associates Annapolis, Maryland, USA. 3Department of Neurosurgery,
University of Pittsburgh Medical Center, Suite 5C, 200 Lothrop St, Pittsburgh,
PA, USA. 4Department of Molecular Pharmacology and Physiology, University
of South Florida, Tampa, Florida, USA.

Received: 29 September 2016 Accepted: 17 February 2017

References
1. Arens NC, West ID. Press-pulse: a general theory of mass extinction?

Paleobiology. 2008;34(4):456–71.
2. Seyfried TN, Flores RE, Poff AM, D’Agostino DP. Cancer as a metabolic

disease: implications for novel therapeutics. Carcinogenesis. 2014;35(3):
515–27.

Seyfried et al. Nutrition & Metabolism  (2017) 14:19 Page 11 of 17



3. Sonnenschein C, Soto AM. Somatic mutation theory of carcinogenesis: why
it should be dropped and replaced. Mol Carcinog. 2000;29(4):205–11.

4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell.
2011;144(5):646–74.

5. Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev
Oncog. 2013;18(1–2):43–73.

6. Sporn MB. The war on cancer. Lancet. 1996;347(9012):1377–81.
7. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’

hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.
8. Lazebnik Y. What are the hallmarks of cancer? Nat Rev Cancer. 2010;10(4):232–3.
9. Tarin D. Cell and tissue interactions in carcinogenesis and metastasis and

their clinical significance. Semin Cancer Biol. 2011;21(2):72–82.
10. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;

67:7–30.
11. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin.

2013;63(1):11–30.
12. Seyfried TN. Cancer as a metabolic disease: on the origin, management, and

prevention of cancer. Hoboken: Wiley; 2012.
13. Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells.

Science. 2015;349(6255):1483–9.
14. Seyfried TN. Cancer as a mitochondrial metabolic disease. Front Cell Dev

Biol. 2015;3:43.
15. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV,

Bignell GR, Bolli N, Borg A, Borresen-Dale AL, et al. Signatures of mutational
processes in human cancer. Nature. 2013;500(7463):415–21.

16. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz Jr LA, Kinzler KW.
Cancer genome landscapes. Science. 2013;339(6127):1546–58.

17. Mazzocca A, Ferraro G, Misciagna G, Carr BI. A systemic evolutionary
approach to cancer: Hepatocarcinogenesis as a paradigm. Med Hypotheses.
2016;93:132–7.

18. Bizzarri M, Cucina A. SMT and TOFT: Why and How they are opposite and
incompatible paradigms. Acta Biotheor. 2016;64(3):221–39.

19. Baker SG. A cancer theory kerfuffle can lead to new lines of research. J Natl
Cancer Inst. 2015;107(2).

20. Wishart DS. Is cancer a genetic disease or a metabolic disease?
EBioMedicine. 2015;2(6):478–9.

21. Baker SG, Kramer BS. Paradoxes in carcinogenesis: new opportunities for
research directions. BMC Cancer. 2007;7:151.

22. Burgio E, Migliore L. Towards a systemic paradigm in carcinogenesis: linking
epigenetics and genetics. Mol Biol Rep. 2015;42(4):777–90.

23. Soto AM, Sonnenschein C. Is systems biology a promising approach to
resolve controversies in cancer research? Cancer Cell Int. 2012;12(1):12.

24. Braun AC. On the origin of the cancer cells. Am Sci. 1970;58(3):307–20.
25. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X,

Martincorena I, Alexandrov LB, Martin S, Wedge DC, et al. Landscape of
somatic mutations in 560 breast cancer whole-genome sequences. Nature.
2016;534(7605):47–54.

26. Stratton MR. Exploring the genomes of cancer cells: progress and promise.
Science. 2011;331(6024):1553–8.

27. Cooke SL, Shlien A, Marshall J, Pipinikas CP, Martincorena I, Tubio JM, Li Y,
Menzies A, Mudie L, Ramakrishna M, et al. Processed pseudogenes acquired
somatically during cancer development. Nat Commun. 2014;5:3644.

28. Bartesaghi S, Graziano V, Galavotti S, Henriquez NV, Betts J, Saxena J, Minieri
V, Deli A, Karlsson A, Martins LM, et al. Inhibition of oxidative metabolism
leads to p53 genetic inactivation and transformation in neural stem cells.
Proc Natl Acad Sci U S A. 2015;112(4):1059–64.

29. Pacini N, Borziani F. Oncostatic-Cytoprotective Effect of Melatonin and
Other Bioactive Molecules: A Common Target in Mitochondrial Respiration.
Int J Mol Sci. 2016;17(3):341.

30. Kim A. Mitochondria in cancer energy metabolism: culprits or bystanders?
Toxicol Res. 2015;31(4):323–30.

31. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.
32. Warburg O. On the respiratory impairment in cancer cells. Science. 1956;

124:269–70.
33. Putignani L, Raffa S, Pescosolido R, Aimati L, Signore F, Torrisi MR,

Grammatico P. Alteration of expression levels of the oxidative
phosphorylation system (OXPHOS) in breast cancer cell mitochondria. Breast
Cancer Res Treat. 2008;110(3):439–52.

34. Dienel GA, Cruz NF. Aerobic glycolysis during brain activation: adrenergic
regulation and influence of norepinephrine on astrocytic metabolism. J
Neurochem. 2016;138(1):14–52.

35. Racker E. History of the Pasteur effect and its pathobiology. Mol Cell
Biochem. 1974;5(1–2):17–23.

36. Warburg O. The Metabolism of Tumours. New York: Richard R. Smith; 1931.
37. Seyfried TN. The Warburg dispute. In: Cancer as a Metabolic Disease: On the

Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012.
p. 107–17.

38. Zu XL, Guppy M. Cancer metabolism: facts, fantasy, and fiction. Biochem
Biophys Res Commun. 2004;313(3):459–65.

39. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to
current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):
325–37.

40. Poff AM, Ari C, Seyfried TN, D’Agostino DP. The ketogenic diet and
hyperbaric oxygen therapy prolong survival in mice with systemic
metastatic cancer. PLoS One. 2013;8(6):e65522.

41. Kiebish MA, Han X, Cheng H, Seyfried TN. In vitro growth environment
produces lipidomic and electron transport chain abnormalities in
mitochondria from non-tumorigenic astrocytes and brain tumours. ASN
Neuro. 2009;1(3):e00011.

42. Diaz-Ruiz R, Rigoulet M, Devin A. The Warburg and Crabtree effects: On the
origin of cancer cell energy metabolism and of yeast glucose repression.
Biochim Biophys Acta. 2011;1807(6):568–76.

43. Leznev EI, Popova II, Lavrovskaja VP, Evtodienko YV. Comparison
of oxygen consumption rates in minimally transformed BALB/3 T3 and
virus-transformed 3T3B-SV40 cells. Biochemistry (Mosc). 2013;78(8):904–8.

44. Hall A, Meyle KD, Lange MK, Klima M, Sanderhoff M, Dahl C,
Abildgaard C, Thorup K, Moghimi SM, Jensen PB, et al. Dysfunctional
oxidative phosphorylation makes malignant melanoma cells addicted
to glycolysis driven by the V600EBRAF oncogene. Oncotarget. 2013;
4(4):584–99.

45. Seyfried TN. Is respiration normal in cancer cells? In: Cancer as a Metabolic
Disease: On the Origin, Management, and Prevention of Cancer. edn.
Hoboken: Wiley; 2012. p. 119–32.

46. Hochachka PW, Somero GN. Biochemical Adaptation: Mechanism and
Process in Physiological Evolution. New York: Oxford Press; 2002.

47. Ramanathan A, Wang C, Schreiber SL. Perturbational profiling of a cell-line
model of tumorigenesis by using metabolic measurements. Proc Natl Acad
Sci U S A. 2005;102(17):5992–7.

48. Arcos JC, Tison MJ, Gosch HH, Fabian JA. Sequential alterations in
mitochondrial inner and outer membrane electron transport and in
respiratory control during feeding of amino azo dyes; stability of
phosphorylation. Correlation with swelling-contraction changes and
tumorigenesis threshold. Cancer Res. 1969;29(6):1298–305.

49. Suarez RK, Lighton JR, Brown GS, Mathieu-Costello O. Mitochondrial
respiration in hummingbird flight muscles. Proc Natl Acad Sci U S A. 1991;
88(11):4870–3.

50. Burk D, Schade AL. On respiratory impairment in cancer cells. Science. 1956;
124(3215):270–2.

51. Smith AE, Kenyon DH. A unifying concept of carcinogenesis and its
therapeutic implications. Oncology. 1973;27(5):459–79.

52. Colowick SP. The status of Warburg’s theory of glycolysis and respiration in
tumors. Q Rev Biol. 1961;36:273–6.

53. Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y, Ogasawara M, Trachootham
D, Feng L, Pelicano H, et al. K-ras (G12V) transformation leads to
mitochondrial dysfunction and a metabolic switch from oxidative
phosphorylation to glycolysis. Cell Res. 2012;22(2):399–412.

54. Cuezva JM, Chen G, Alonso AM, Isidoro A, Misek DE, Hanash SM, Beer DG.
The bioenergetic signature of lung adenocarcinomas is a molecular marker
of cancer diagnosis and prognosis. Carcinogenesis. 2004;25(7):1157–63.

55. Ferreira LM. Cancer metabolism: the Warburg effect today. Exp Mol Pathol.
2010;89(3):372–80.

56. Seyfried TN, Shelton LM. Cancer as a metabolic disease. Nutr Metab (Lond).
2010;7(1):7.

57. Poff AM, Ari C, Arnold P, Seyfried TN, D’Agostino DP. Ketone
supplementation decreases tumor cell viability and prolongs survival of
mice with metastatic cancer. Int J Cancer. 2014;135(7):1711–20.

58. Pedersen PL. Warburg, me and Hexokinase 2: Multiple discoveries of key
molecular events underlying one of cancers’ most common phenotypes,
the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen.
J Bioenerg Biomembr. 2007;39(3):211–22.

59. Warburg O. Revidsed Lindau Lectures: The prime cause of cancer and
prevention - Parts 1 & 2. In: Lindau BD, editor. Meeting of the Nobel-

Seyfried et al. Nutrition & Metabolism  (2017) 14:19 Page 12 of 17



Laureates. Lake Constance: K. Triltsch; 1969. p. 1–9. http://www.
hopeforcancer.com/OxyPlus.htm.

60. Racker E. Bioenergetics and the problem of tumor growth. Am Sci. 1972;
60(1):56–63.

61. Weinhouse S. The Warburg hypothesis fifty years later. Z Krebsforsch Klin
Onkol Cancer Res Clin Oncol. 1976;87(2):115–26.

62. Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL, Rajagopalan
KN, Maddie M, Vemireddy V, Zhao Z, et al. Analysis of tumor metabolism
reveals mitochondrial glucose oxidation in genetically diverse human
glioblastomas in the mouse brain in vivo. Cell Metab. 2012;15(6):827–37.

63. Seyfried TN. Respiratory dysfunction in cancer cells. In: Cancer as a
Metabolic Disease: On the Origin, Management, and Prevention of Cancer.
edn. Hoboken: Wiley; 2012. p. 73–105.

64. Lichtor T, Dohrmann GJ. Respiratory patterns in human brain tumors.
Neurosurgery. 1986;19(6):896–9.

65. Seyfried TN, Mukherjee P. Targeting energy metabolism in brain cancer:
review and hypothesis. Nutr Metab (Lond). 2005;2:30.

66. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg
effect: the metabolic requirements of cell proliferation. Science. 2009;
324(5930):1029–33.

67. Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaria G, Kim H,
Zapata JM, Marusawa H, Chamorro M, Reed JC. The bioenergetic signature
of cancer: a marker of tumor progression. Cancer Res. 2002;62(22):6674–81.

68. Pedersen PL. Tumor mitochondria and the bioenergetics of cancer cells.
Prog Exp Tumor Res. 1978;22:190–274.

69. Morton R, Cunningham C, Jester R, Waite M, Miller N, Morris HP. Alteration
of mitochondrial function and lipid composition in Morris 7777 hepatoma.
Cancer Res. 1976;36(9 pt.1):3246–54.

70. Schild L, Lendeckel U, Gardemann A, Wiswedel I, Schmidt CA, Wolke C,
Walther R, Grabarczyk P, Busemann C. Composition of molecular cardiolipin
species correlates with proliferation of lymphocytes. Exp Biol Med. 2012;
237(4):372–9.

71. Sapandowski A, Stope M, Evert K, Evert M, Zimmermann U, Peter D, Page I,
Burchardt M, Schild L. Cardiolipin composition correlates with prostate
cancer cell proliferation. Mol Cell Biochem. 2015;410(1–2):175–85.

72. Canuto RA, Biocca ME, Muzio G, Dianzani MU. Fatty acid composition of
phospholipids in mitochondria and microsomes during diethylnitrosamine
carcinogenesis in rat liver. Cell Biochem Funct. 1989;7(1):11–9.

73. Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN. Cardiolipin and
electron transport chain abnormalities in mouse brain tumor mitochondria:
lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res.
2008;49(12):2545–56.

74. Peyta L, Jarnouen K, Pinault M, Guimaraes C, de Barros JP P, Chevalier S,
Dumas JF, Maillot F, Hatch GM, Loyer P, et al. Reduced cardiolipin content
decreases respiratory chain capacities and increases ATP synthesis yield in
the human HepaRG cells. Biochim Biophys Acta. 2016;4:443–53.

75. Kiebish MA, Han X, Cheng H, Seyfried TN. Mitochondrial lipidome and
electron transport chain alterations in non-metastatic and metastatic
murine brain tumors. J Neurochem. 2008;104 Suppl 1:37–8.

76. Claypool SM, Koehler CM. The complexity of cardiolipin in health and
disease. Trends Biochem Sci. 2012;37(1):32–41.

77. Ren M, Phoon CK, Schlame M. Metabolism and function of mitochondrial
cardiolipin. Prog Lipid Res. 2014;55:1–16.

78. Chinopoulos C. Which way does the citric acid cycle turn during hypoxia?
The critical role of alpha-ketoglutarate dehydrogenase complex. J Neurosci
Res. 2013;91(8):1030–43.

79. Peiris-Pages M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP.
Cancer stem cell metabolism. Breast Cancer Res. 2016;18(1):55.

80. Deighton RF, Le Bihan T, Martin SF, Gerth AM, McCulloch M, Edgar JM, Kerr
LE, Whittle IR, McCulloch J. Interactions among mitochondrial proteins
altered in glioblastoma. J Neuro-Oncol. 2014;118(2):247–56.

81. Arismendi-Morillo GJ, Castellano-Ramirez AV. Ultrastructural
mitochondrial pathology in human astrocytic tumors: potentials
implications pro-therapeutics strategies. J Electron Microsc (Tokyo).
2008;57(1):33–9.

82. Schmitt S, Schulz S, Schropp EM, Eberhagen C, Simmons A, Beisker W,
Aichler M, Zischka H. Why to compare absolute numbers of mitochondria.
Mitochondrion. 2014;19 Pt A:113–23.

83. Verschoor ML, Ungard R, Harbottle A, Jakupciak JP, Parr RL, Singh G.
Mitochondria and cancer: past, present, and future. Biomed Res Int. 2013;
2013:612369.

84. Srinivasan S, Guha M, Dong DW, Whelan KA, Ruthel G, Uchikado Y,
Natsugoe S, Nakagawa H, Avadhani NG. Disruption of cytochrome c oxidase
function induces the Warburg effect and metabolic reprogramming.
Oncogene. 2015;35:1585–95.

85. Sriskanthadevan S, Jeyaraju DV, Chung TE, Prabha S, Xu W, Skrtic M, Jhas B,
Hurren R, Gronda M, Wang X, et al. AML cells have low spare reserve
capacity in their respiratory chain that renders them susceptible to oxidative
metabolic stress. Blood. 2015;125(13):2120–30.

86. Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers
by oncogenes and tumor suppressor genes. Science. 2010;330(6009):1340–4.

87. Kaipparettu BA, Ma Y, Park JH, Lee TL, Zhang Y, Yotnda P, Creighton CJ,
Chan WY, Wong LJ. Crosstalk from non-cancerous mitochondria can inhibit
tumor properties of metastatic cells by suppressing oncogenic pathways.
PLoS One. 2013;8(5):e61747.

88. Seyfried TN. Mitochondria: The ultimate tumor suppressor. In: Cancer as a
Metabolic Disease: On the Origin, Management, and Prevention of Cancer.
edn. Hoboken: Wiley; 2012. p. 195–205.

89. Kloc M, Li XC, Ghobrial RM. Are Macrophages Responsible for Cancer
Metastasis? J Immuno Biol. 2016;1:1.

90. Pawelek JM, Chakraborty AK. Fusion of tumour cells with bone marrow-
derived cells: a unifying explanation for metastasis. Nat Rev Cancer. 2008;
8(5):377–86.

91. Bastida-Ruiz D, Van Hoesen K, Cohen M: The Dark Side of Cell Fusion.
Int J Mol Sci. 2016, 17 (5). doi: 10.3390/ijms17050638

92. Seyfried TN. Mitochondrial respiratory dysfunction and the
extrachromosomal origin of cancer. In: Cancer as a Metabolic Disease: On
the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley;
2012. p. 253–9.

93. Nemeth B, Doczi J, Csete D, Kacso G, Ravasz D, Adams D, Kiss G, Nagy AM,
Horvath G, Tretter L, et al. Abolition of mitochondrial substrate-level
phosphorylation by itaconic acid produced by LPS-induced Irg1 expression
in cells of murine macrophage lineage. FASEB J. 2016;30(1):286–300.

94. Seyfried TN. Is mitochondrial glutamine fermentation a missing link in the
metabolic theory of cancer? In: Cancer as a Metabolic Disease: On the
Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley;
2012. p. 133–44.

95. Chinopoulos C, Gerencser AA, Mandi M, Mathe K, Torocsik B, Doczi J, Turiak
L, Kiss G, Konrad C, Vajda S, et al. Forward operation of adenine nucleotide
translocase during F0F1-ATPase reversal: critical role of matrix substrate-level
phosphorylation. FASEB J. 2010;24(7):2405–16.

96. Phillips D, Aponte AM, French SA, Chess DJ, Balaban RS. Succinyl-CoA
synthetase is a phosphate target for the activation of mitochondrial
metabolism. Biochemistry. 2009;48(30):7140–9.

97. Schwimmer C, Lefebvre-Legendre L, Rak M, Devin A, Slonimski PP, di Rago
JP, Rigoulet M. Increasing mitochondrial substrate-level phosphorylation can
rescue respiratory growth of an ATP synthase-deficient yeast. J Biol Chem.
2005;280(35):30751–9.

98. Kiss G, Konrad C, Pour-Ghaz I, Mansour JJ, Nemeth B, Starkov AA, Adam-Vizi
V, Chinopoulos C. Mitochondrial diaphorases as NAD (+) donors to
segments of the citric acid cycle that support substrate-level
phosphorylation yielding ATP during respiratory inhibition. FASEB J. 2014;
28(4):1682–97.

99. Newsholme EA, Board M. Application of metabolic-control logic to fuel
utilization and its significance in tumor cells. Adv Enzyme Regul. 1991;
31:225–46.

100. DeBerardinis RJ, Cheng T. Q’s next: the diverse functions of glutamine in
metabolism, cell biology and cancer. Oncogene. 2010;29(3):313–24.

101. Yuneva M. Finding an “Achilles’ heel” of cancer: the role of glucose and
glutamine metabolism in the survival of transformed cells. Cell Cycle. 2008;
7(14):2083–9.

102. Medina MA. Glutamine and cancer. J Nutr. 2001;131(9 Suppl):2539–2542S.
discussion 2550S-2531S.

103. Huang W, Choi W, Chen Y, Zhang Q, Deng H, He W, Shi Y. A proposed role
for glutamine in cancer cell growth through acid resistance. Cell Res. 2013;
23(5):724–7.

104. Nakashima RA, Paggi MG, Pedersen PL. Contributions of glycolysis and
oxidative phosphorylation to adenosine 5′-triphosphate production in AS-
30D hepatoma cells. Cancer Res. 1984;44(12 Pt 1):5702–6.

105. Ta NL, Seyfried TN. Influence of Serum and Hypoxia on Incorporation of
[(14) C]-D-Glucose or [(14) C]-L-Glutamine into Lipids and Lactate in Murine
Glioblastoma Cells. Lipids. 2015;50(12):1167–84.

Seyfried et al. Nutrition & Metabolism  (2017) 14:19 Page 13 of 17

http://www.hopeforcancer.com/OxyPlus.htm
http://www.hopeforcancer.com/OxyPlus.htm
http://dx.doi.org/10.3390/ijms17050638


106. Portais JC, Voisin P, Merle M, Canioni P. Glucose and glutamine metabolism
in C6 glioma cells studied by carbon 13 NMR. Biochimie. 1996;78(3):155–64.

107. Scott DA, Richardson AD, Filipp FV, Knutzen CA, Chiang GG, Ronai ZA,
Osterman AL, Smith JW. Comparative metabolic flux profiling of melanoma
cell lines: beyond the Warburg effect. J Biol Chem. 2011;286(49):42626–34.

108. Shelton LM, Huysentruyt LC, Seyfried TN. Glutamine targeting inhibits
systemic metastasis in the VM-M3 murine tumor model. Int J Cancer. 2010;
127(10):2478–85.

109. Pisarenko OI, Solomatina ES, Ivanov VE, Studneva IM, Kapelko VI, Smirnov
VN. On the mechanism of enhanced ATP formation in hypoxic myocardium
caused by glutamic acid. Basic Res Cardiol. 1985;80(2):126–34.

110. Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I. Mitochondrial
dysfunction during hypoxia/reoxygenation and its correction by anaerobic
metabolism of citric acid cycle intermediates. Proc Natl Acad Sci U S A.
2000;97(6):2826–31.

111. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF,
Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, et al. Succinate is an
inflammatory signal that induces IL-1beta through HIF-1alpha. Nature. 2013;
496(7444):238–42.

112. Hochachka PW, Owen TG, Allen JF, Whittow GC. Multiple end products of
anaerobiosis in diving vertebrates. Comp Biochem Physiol B.
1975;50(1):17–22.

113. King A, Selak MA, Gottlieb E. Succinate dehydrogenase and fumarate
hydratase: linking mitochondrial dysfunction and cancer. Oncogene. 2006;
25(34):4675–82.

114. Marsh J, Mukherjee P, Seyfried TN. Akt-dependent proapoptotic effects of
dietary restriction on late-stage management of a phosphatase and tensin
homologue/tuberous sclerosis complex 2-deficient mouse astrocytoma. Clin
Cancer Res. 2008;14(23):7751–62.

115. Semenza GL. HIF-1 mediates the Warburg effect in clear cell renal
carcinoma. J Bioenerg Biomembr. 2007;39(3):231–4.

116. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV,
Semenza GL. HIF-1 Inhibits Mitochondrial Biogenesis and Cellular
Respiration in VHL-Deficient Renal Cell Carcinoma by Repression of C-MYC
Activity. Cancer Cell. 2007;11(5):407–20.

117. Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK, Walters H,
Tantawy MN, Fu A, Manning HC, et al. Acetate dependence of tumors. Cell.
2014;159(7):1591–602.

118. Hosios AM, Vander Heiden MG. Acetate metabolism in cancer cells. Cancer
& metabolism. 2014;2(1):27.

119. Ballard FJ. Supply and utilization of acetate in mammals. Am J Clin Nutr.
1972;25(8):773–9.

120. Jaworski DM, Namboodiri AM, Moffett JR. Acetate as a Metabolic and
Epigenetic Modifier of Cancer Therapy. J Cell Biochem. 2015;117:574–88.

121. Huysentruyt LC, Seyfried TN. Perspectives on the mesenchymal origin of
metastatic cancer. Cancer Metastasis Rev. 2010;29(4):695–707.

122. Pawelek JM. Tumour-cell fusion as a source of myeloid traits in cancer.
Lancet Oncol. 2005;6(12):988–93.

123. Ruff MR, Pert CB. Small cell carcinoma of the lung: macrophage-specific
antigens suggest hemopoietic stem cell origin. Science. 1984;225(4666):
1034–6.

124. Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C, Impey S, Wong MH.
Fusion between Intestinal epithelial cells and macrophages in a cancer
context results in nuclear reprogramming. Cancer Res. 2011;71(4):1497–505.

125. Yeh MH, Chang YH, Tsai YC, Chen SL, Huang TS, Chiu JF, Ch’ang HJ.
Bone marrow derived macrophages fuse with intestine stromal cells
and contribute to chronic fibrosis after radiation. Radiother Oncol. 2016;
119(2):250–8.

126. Abodief WT, Dey P, Al-Hattab O. Cell cannibalism in ductal carcinoma of
breast. Cytopathology. 2006;17(5):304–5.

127. Fais S. Cannibalism: a way to feed on metastatic tumors. Cancer Lett. 2007;
258(2):155–64.

128. Lugini L, Matarrese P, Tinari A, Lozupone F, Federici C, Iessi E, Gentile M,
Luciani F, Parmiani G, Rivoltini L, et al. Cannibalism of live lymphocytes by
human metastatic but not primary melanoma cells. Cancer Res. 2006;66(7):
3629–38.

129. Matarrese P, Ciarlo L, Tinari A, Piacentini M, Malorni W. Xeno-cannibalism as
an exacerbation of self-cannibalism: a possible fruitful survival strategy for
cancer cells. Curr Pharm Des. 2008;14(3):245–52.

130. Gupta K, Dey P. Cell cannibalism: diagnostic marker of malignancy. Diagn
Cytopathol. 2003;28(2):86–7.

131. Kojima S, Sekine H, Fukui I, Ohshima H. Clinical significance of “cannibalism”
in urinary cytology of bladder cancer. Acta Cytol. 1998;42(6):1365–9.

132. Shelton LM. Targeting energy metabolism in brain cancer. Chestnut Hill:
Boston College; 2010.

133. Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, Grabocka E, Vander
Heiden MG, Miller G, Drebin JA, Bar-Sagi D, et al. Human pancreatic cancer
tumors are nutrient poor and tumor cells actively scavenge extracellular
protein. Cancer Res. 2015;75(3):544–53.

134. Lu J, Sharma LK, Bai Y. Implications of mitochondrial DNA mutations and
mitochondrial dysfunction in tumorigenesis. Cell Res. 2009;19(7):802–15.

135. Yang D, Wang MT, Tang Y, Chen Y, Jiang H, Jones TT, Rao K, Brewer GJ,
Singh KK, Nie D. Impairment of mitochondrial respiration in mouse
fibroblasts by oncogenic H-RAS (Q61L). Cancer Biol Ther. 2010;9(2):122–33.

136. Smiraglia DJ, Kulawiec M, Bistulfi GL, Gupta SG, Singh KK. A novel role for
mitochondria in regulating epigenetic modification in the nucleus. Cancer
Biol Ther. 2008;7(8):1182–90.

137. Delsite RL, Rasmussen LJ, Rasmussen AK, Kalen A, Goswami PC, Singh KK.
Mitochondrial impairment is accompanied by impaired oxidative DNA
repair in the nucleus. Mutagenesis. 2003;18(6):497–503.

138. Kulawiec M, Safina A, Desouki MM, Still I, Matsui SI, Bakin A, Singh KK.
Tumorigenic transformation of human breast epithelial cells induced by
mitochondrial DNA depletion. Cancer Biol Ther. 2008;7(11):1732–43.

139. Rasmussen AK, Chatterjee A, Rasmussen LJ, Singh KK. Mitochondria-
mediated nuclear mutator phenotype in Saccharomyces cerevisiae. Nucleic
Acids Res. 2003;31(14):3909–17.

140. Chandra D, Singh KK. Genetic insights into OXPHOS defect and its role in
cancer. Biochim Biophys Acta. 2011;1807(6):620–5.

141. Veatch JR, McMurray MA, Nelson ZW, Gottschling DE. Mitochondrial
dysfunction leads to nuclear genome instability via an iron-sulfur cluster
defect. Cell. 2009;137(7):1247–58.

142. Samper E, Nicholls DG, Melov S. Mitochondrial oxidative stress causes
chromosomal instability of mouse embryonic fibroblasts. Aging Cell. 2003;
2(5):277–85.

143. Seoane M, Mosquera-Miguel A, Gonzalez T, Fraga M, Salas A, Costoya JA.
The Mitochondrial Genome Is a “Genetic Sanctuary” during the Oncogenic
Process. PLoS One. 2011;6(8):e23327.

144. Minocherhomji S, Tollefsbol TO, Singh KK. Mitochondrial regulation of
epigenetics and its role in human diseases. Epigenetics. 2012;7(4):326–34.

145. Veech RL. The therapeutic implications of ketone bodies: the effects of
ketone bodies in pathological conditions: ketosis, ketogenic diet, redox
states, insulin resistance, and mitochondrial metabolism. Prostaglandins
Leukot Essent Fatty Acids. 2004;70(3):309–19.

146. Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators,
amplifiers or an Achilles’ heel? Nat Rev Cancer. 2014;14(11):709–21.

147. Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative
damage in carcinogenesis. Toxicol Pathol. 2010;38(1):96–109.

148. Szent-Gyorgyi A. The living state and cancer. Proc Natl Acad Sci U S A. 1977;
74(7):2844–7.

149. Cairns J. The origin of human cancers. Nature. 1981;289(5796):353–7.
150. Mukherjee S. The Emperor of All Maladies: A Biography of Cancer (pages

285, 303, 333, 342). New York: Scribner; 2010.
151. Potts R. Environmental hypotheses of hominin evolution. Am J Phys

Anthropol. 1998;Suppl 27:93–136.
152. Potts R. Humanity’s Descent: The Consequences of Ecological Instability.

New York: William Morrow & Co., Inc.; 1996.
153. Potts R. Complexity of Adaptibility in Human Evolution. In: Goodman M,

Moffat AS, editors. Probing Human Origins. edn. Cambridge: American
Academy of Arts & Sciences; 2002. p. 33–57.

154. Seyfried TN. Nothing in cancer biology makes sense except in the light of
evolution. In: Cancer as a Metabolic Disease: On the Origin, Management,
and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 261–75.

155. Darwin C. On the Origin of Species by Means of Natural Selection, or
on the Preservation of Favored Races in the Struggle for Life. London:
John Murry; 1859.

156. Moiseeva O, Bourdeau V, Roux A, Deschenes-Simard X, Ferbeyre G.
Mitochondrial dysfunction contributes to oncogene-induced senescence.
Mol Cell Biol. 2009;29(16):4495–507.

157. de Groof AJ, te Lindert MM, van Dommelen MM, Wu M, Willemse M, Smift
AL, Winer M, Oerlemans F, Pluk H, Fransen JA, et al. Increased OXPHOS
activity precedes rise in glycolytic rate in H-RasV12/E1A transformed
fibroblasts that develop a Warburg phenotype. Mol Cancer. 2009;8:54.

Seyfried et al. Nutrition & Metabolism  (2017) 14:19 Page 14 of 17



158. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ,
Bunz F, Hwang PM. p53 regulates mitochondrial respiration. Science. 2006;
312(5780):1650–3.

159. Galmiche A, Fueller J. RAF kinases and mitochondria. Biochim Biophys Acta.
2007;1773(8):1256–62.

160. Kerr EM, Gaude E, Turrell FK, Frezza C, Martins CP. Mutant Kras copy number
defines metabolic reprogramming and therapeutic susceptibilities. Nature.
2016;531(7592):110–3.

161. Grabacka M, Pierzchalska M, Reiss K. Peroxisome Proliferator Activated
Receptor alpha Ligands As Anti-Cancer Drugs Targeting Mitochondrial
Metabolism. Curr Pharm Biotechnol. 2013;14:342–56.

162. Eales KL, Hollinshead KE, Tennant DA. Hypoxia and metabolic adaptation of
cancer cells. Oncogenesis. 2016;5:e190.

163. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang
P. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug
resistance associated with mitochondrial respiratory defect and hypoxia.
Cancer Res. 2005;65(2):613–21.

164. Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology,
physiology, and clinical opportunities. J Clin Invest. 2013;123(9):3678–84.

165. Rozhok AI, DeGregori J. Toward an evolutionary model of cancer:
Considering the mechanisms that govern the fate of somatic mutations.
Proc Natl Acad Sci U S A. 2015;112(29):8914–21.

166. Mukherjee P, Mulrooney TJ, Marsh J, Blair D, Chiles TC, Seyfried TN.
Differential effects of energy stress on AMPK phosphorylation and
apoptosis in experimental brain tumor and normal brain. Mol Cancer.
2008;7:37.

167. Mukherjee P, Sotnikov AV, Mangian HJ, Zhou JR, Visek WJ, Clinton SK.
Energy intake and prostate tumor growth, angiogenesis, and vascular
endothelial growth factor expression. J Natl Cancer Inst. 1999;91(6):512–23.

168. Nebeling LC, Miraldi F, Shurin SB, Lerner E. Effects of a ketogenic diet on
tumor metabolism and nutritional status in pediatric oncology patients: two
case reports. J Am Coll Nutr. 1995;14(2):202–8.

169. Zuccoli G, Marcello N, Pisanello A, Servadei F, Vaccaro S, Mukherjee P,
Seyfried TN. Metabolic management of glioblastoma multiforme using
standard therapy together with a restricted ketogenic diet: Case Report.
Nutr Metab (Lond). 2010;7(1):33.

170. Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN. Dietary
restriction reduces angiogenesis and growth in an orthotopic mouse brain
tumour model. Br J Cancer. 2002;86(10):1615–21.

171. Mukherjee P, Abate LE, Seyfried TN. Antiangiogenic and proapoptotic
effects of dietary restriction on experimental mouse and human brain
tumors. Clin Cancer Res. 2004;10(16):5622–9.

172. Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P. Role
of glucose and ketone bodies in the metabolic control of experimental
brain cancer. Br J Cancer. 2003;89(7):1375–82.

173. Seyfried TN, Mukherjee P. Anti-Angiogenic and Pro-Apoptotic Effects of
Dietary Restriction in Experimental Brain Cancer: Role of Glucose and
Ketone Bodies. In: Meadows GG, editor. Integration/Interaction of Oncologic
Growth. Volume 15. 2nd ed. New York: Kluwer; 2005. p. 259–70.

174. Zhou W, Mukherjee P, Kiebish MA, Markis WT, Mantis JG, Seyfried TN. The
calorically restricted ketogenic diet, an effective alternative therapy for
malignant brain cancer. Nutr Metab (Lond). 2007;4:5.

175. Soto AM, Sonnenschein C. The somatic mutation theory of cancer: growing
problems with the paradigm? Bioessays. 2004;26(10):1097–107.

176. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;
194(4260):23–8.

177. Cahill Jr GF. Fuel metabolism in starvation. Annu Rev Nutr. 2006;26:1–22.
178. Magee BA, Potezny N, Rofe AM, Conyers RA. The inhibition of malignant cell

growth by ketone bodies. Aust J Exp Biol Med Sci. 1979;57(5):529–39.
179. Skinner R, Trujillo A, Ma X, Beierle EA. Ketone bodies inhibit the viability of

human neuroblastoma cells. J Pediatr Surg. 2009;44(1):212–6. discussion 216.
180. Maurer GD, Brucker DP, Baehr O, Harter PN, Hattingen E, Walenta S, Mueller-

Klieser W, Steinbach JP, Rieger J. Differential utilization of ketone bodies by
neurons and glioma cell lines: a rationale for ketogenic diet as experimental
glioma therapy. BMC Cancer. 2011;11(1):315.

181. Chang HT, Olson LK, Schwartz KA. Ketolytic and glycolytic enzymatic
expression profiles in malignant gliomas: implication for ketogenic diet
therapy. Nutr Metab. 2013;10(1):47.

182. Mulrooney TJ, Marsh J, Urits I, Seyfried TN, Mukherjee P. Influence of Caloric
Restriction on Constitutive Expression of NF-kappaB in an Experimental
Mouse Astrocytoma. PLoS One. 2011;6(3):e18085.

183. Abdelwahab MG, Fenton KE, Preul MC, Rho JM, Lynch A, Stafford P, Scheck
AC. The ketogenic diet is an effective adjuvant to radiation therapy for the
treatment of malignant glioma. PLoS One. 2012;7(5):e36197.

184. Martuscello RT, Vedam-Mai V, McCarthy DJ, Schmoll ME, Jundi MA, Louviere
CD, Griffith BG, Skinner CL, Suslov O, Deleyrolle LP, et al. A Supplemented
High-Fat Low-Carbohydrate Diet for the Treatment of Glioblastoma. Clin
Cancer Res. 2015;22:2482–95.

185. Vincent M. Cancer: a de-repression of a default survival program common
to all cells?: a life-history perspective on the nature of cancer. BioEssays.
2012;34(1):72–82.

186. Cervantes-Madrid D, Romero Y, Duenas-Gonzalez A. Reviving Lonidamine
and 6-Diazo-5-oxo-L-norleucine to Be Used in Combination for Metabolic
Cancer Therapy. Biomed Res Int. 2015;2015:690492.

187. Freeman JM, Kossoff EH. Ketosis and the ketogenic diet, 2010: advances in
treating epilepsy and other disorders. Adv Pediatr. 2010;57(1):315–29.

188. Kossoff EH, Hartman AL. Ketogenic diets: new advances for metabolism-
based therapies. Curr Opin Neurol. 2012;25(2):173.

189. Meidenbauer JJ, Mukherjee P, Seyfried TN. The glucose ketone index
calculator: a simple tool to monitor therapeutic efficacy for metabolic
management of brain cancer. Nutr Metab (Lond). 2015;12:12.

190. Poff AM, Ward N, Seyfried TN, Arnold P, D’Agostino DP. Non-Toxic
Metabolic Management of Metastatic Cancer in VM Mice: Novel
Combination of Ketogenic Diet, Ketone Supplementation, and Hyperbaric
Oxygen Therapy. PLoS One. 2015;10(6):e0127407.

191. Burt ME, Gorschboth CM, Brennan MF. A controlled, prospective,
randomized trial evaluating the metabolic effects of enteral and parenteral
nutrition in the cancer patient. Cancer. 1982;49(6):1092–105.

192. Campbell TC. Dietary protein, growth factors, and cancer. Am J Clin Nutr.
2007;85(6):1667.

193. Lu Z, Xie J, Wu G, Shen J, Collins R, Chen W, Kang X, Luo M, Zou Y, Huang
LJ, et al. Fasting selectively blocks development of acute lymphoblastic
leukemia via leptin-receptor upregulation. Nature. 2017;23:79–90.

194. Jiang YS, Wang FR. Caloric restriction reduces edema and prolongs survival
in a mouse glioma model. J Neuro-Oncol. 2013;114(1):25–32.

195. Tisdale MJ, Brennan RA. A comparison of long-chain triglycerides and
medium-chain triglycerides on weight loss and tumour size in a cachexia
model. Br J Cancer. 1988;58(5):580–3.

196. Tisdale MJ, Brennan RA, Fearon KC. Reduction of weight loss and tumour
size in a cachexia model by a high fat diet. Br J Cancer. 1987;56(1):39–43.

197. Lussier DM, Woolf EC, Johnson JL, Brooks KS, Blattman JN, Scheck AC.
Enhanced immunity in a mouse model of malignant glioma is mediated by
a therapeutic ketogenic diet. BMC Cancer. 2016;16:310.

198. Shukla SK, Gebregiworgis T, Purohit V, Chaika NV, Gunda V, Radhakrishnan P,
Mehla K, Pipinos II, Powers R, Yu F, et al. Metabolic reprogramming induced
by ketone bodies diminishes pancreatic cancer cachexia. Cancer
metabolism. 2014;2:18.

199. Morscher RJ, Aminzadeh-Gohari S, Feichtinger RG, Mayr JA, Lang R,
Neureiter D, Sperl W, Kofler B. Inhibition of Neuroblastoma Tumor Growth
by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model.
PLoS One. 2015;10(6):e0129802.

200. Morscher RJ, Aminzadeh-Gohari S, Hauser-Kronberger C, Feichtinger RG,
Sperl W, Kofler B. Combination of metronomic cyclophosphamide and
dietary intervention inhibits neuroblastoma growth in a CD1-nu mouse
model. Oncotarget. 2016;7(13):17060–73.

201. Allen BG, Bhatia SK, Buatti JM, Brandt KE, Lindholm KE, Button AM, Szweda
LI, Smith BJ, Spitz DR, Fath MA. Ketogenic diets enhance oxidative stress
and radio-chemo-therapy responses in lung cancer xenografts. Clin Cancer
Res. 2013;19(14):3905–13.

202. Mavropoulos JC, Buschemeyer 3rd WC, Tewari AK, Rokhfeld D, Pollak M,
Zhao Y, Febbo PG, Cohen P, Hwang D, Devi G, et al. The effects of
varying dietary carbohydrate and fat content on survival in a murine
LNCaP prostate cancer xenograft model. Cancer Prev Res (Phila). 2009;
2(6):557–65.

203. Kim HS, Masko EM, Poulton SL, Kennedy KM, Pizzo SV, Dewhirst MW,
Freedland SJ. Carbohydrate restriction and lactate transporter inhibition in a
mouse xenograft model of human prostate cancer. BJU Int. 2012;110(7):
1062–9.

204. Lv M, Zhu X, Wang H, Wang F, Guan W. Roles of caloric restriction,
ketogenic diet and intermittent fasting during initiation, progression and
metastasis of cancer in animal models: a systematic review and meta-
analysis. PLoS One. 2014;9(12):e115147.

Seyfried et al. Nutrition & Metabolism  (2017) 14:19 Page 15 of 17



205. Zhuang Y, Chan DK, Haugrud AB, Miskimins WK. Mechanisms by which low
glucose enhances the cytotoxicity of metformin to cancer cells both in vitro
and in vivo. PLoS One. 2014;9(9):e108444.

206. Hao GW, Chen YS, He DM, Wang HY, Wu GH, Zhang B. Growth of human
colon cancer cells in nude mice is delayed by ketogenic diet with or
without omega-3 fatty acids and medium-chain triglycerides. Asian Pac J
Cancer Prev. 2015;16(5):2061–8.

207. Maroon JC, Seyfried TN, Donohue JP, Bost J. The role of metabolic therapy
in treating glioblastoma multiforme. Surg Neurol Int. 2015;6:61.

208. Rieger J, Bahr O, Maurer GD, Hattingen E, Franz K, Brucker D, Walenta S,
Kammerer U, Coy JF, Weller M, et al. ERGO: a pilot study of ketogenic diet in
recurrent glioblastoma. Int J Oncol. 2014;44(6):1843–52.

209. Klement RJ. Calorie or carbohydrate restriction? The ketogenic diet as
another option for supportive cancer treatment. Oncologist. 2013;18(9):1056.

210. Klement RJ. Restricting carbohydrates to fight head and neck cancer-is this
realistic? Cancer biol med. 2014;11(3):145–61.

211. Tan-Shalaby JL, Carrick J, Edinger K, Genovese D, Liman AD, Passero VA,
Shah RB. Modified Atkins diet in advanced malignancies - final results of a
safety and feasibility trial within the Veterans Affairs Pittsburgh Healthcare
System. Nutr Metab (Lond). 2016;13:52.

212. Schmidt M, Pfetzer N, Schwab M, Strauss I, Kammerer U. Effects of a
ketogenic diet on the quality of life in 16 patients with advanced cancer: A
pilot trial. Nutr Metab. 2011;8(1):54.

213. Champ CE, Palmer JD, Volek JS, Werner-Wasik M, Andrews DW, Evans JJ, Glass
J, Kim L, Shi W. Targeting metabolism with a ketogenic diet during the
treatment of glioblastoma multiforme. J Neuro-Oncol. 2014;117(1):125–31.

214. Champ CE, Mishra MV, Showalter TN, Ohri N, Dicker AP, Simone NL. Dietary
recommendations during and after cancer treatment: consistently
inconsistent? Nutr Cancer. 2013;65(3):430–9.

215. Fine EJ, Segal-Isaacson CJ, Feinman RD, Herszkopf S, Romano MC, Tomuta
N, Bontempo AF, Negassa A, Sparano JA. Targeting insulin inhibition as a
metabolic therapy in advanced cancer: a pilot safety and feasibility dietary
trial in 10 patients. Nutrition. 2012;28(10):1028–35.

216. Schwartz K, Chang HT, Nikolai M, Pernicone J, Rhee S, Olson K, Kurniali PC,
Hord NG, Noel M. Treatment of glioma patients with ketogenic diets: report
of two cases treated with an IRB-approved energy-restricted ketogenic diet
protocol and review of the literature. Cancer metab. 2015;3:3.

217. Klement RJ, Sweeney RA. Impact of a ketogenic diet intervention during
radiotherapy on body composition: I. Initial clinical experience with six
prospectively studied patients. BMC Res Notes. 2016;9:143.

218. Freeman JM, Kossoff EH, Freeman JB, Kelly MT. The Ketogenic Diet: A
Treatment for Children and Others with Epilepsy. 4th ed. New York: Demos;
2007.

219. Mantis JG, Centeno NA, Todorova MT, McGowan R, Seyfried TN.
Management of multifactorial idiopathic epilepsy in EL mice with caloric
restriction and the ketogenic diet: role of glucose and ketone bodies. Nutr
Metab (Lond). 2004;1(1):11.

220. Cahill Jr GF, Veech RL. Ketoacids? Good medicine? Trans Am Clin Climatol
Assoc. 2003;114:149–61. discussion 162–143.

221. Fein EJ, Feinman RD. Insulin, carbohydrate restriction, metabolic syndrome
and cancer. Expert Rev Endocrinol Metab. 2015;10:15–24.

222. Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, Chance B,
Clarke K, Veech RL. Insulin, ketone bodies, and mitochondrial energy
transduction. Faseb J. 1995;9(8):651–8.

223. VanItallie TB, Nufert TH. Ketones: metabolism’s ugly duckling. Nutr Rev. 2003;
61(10):327–41.

224. Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill Jr GF. Ketone bodies,
potential therapeutic uses. IUBMB Life. 2001;51(4):241–7.

225. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian
organs. Physiol Rev. 1979;59(3):527–605.

226. Fine EJ, Miller A, Quadros EV, Sequeira JM, Feinman RD. Acetoacetate
reduces growth and ATP concentration in cancer cell lines which over-
express uncoupling protein 2. Cancer Cell Int. 2009;9:14.

227. Ciraolo ST, Previs SF, Fernandez CA, Agarwal KC, David F, Koshy J, Lucas D,
Tammaro A, Stevens MP, Tserng KY, et al. Model of extreme hypoglycemia
in dogs made ketotic with (R, S)-1,3-butanediol acetoacetate esters. Am J
Phys. 1995;269(1 Pt 1):E67–75.

228. Chance B, editor. Energy-Linked Functions of Mitochondria. New York:
Academic; 1963.

229. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter
CA, Lim H, Saunders LR, Stevens RD, et al. Suppression of oxidative stress by

beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor.
Science. 2013;339(6116):211–4.

230. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer
treatment. J Clin Invest. 2014;124(1):30–9.

231. Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D,
D’Agostino D, Planavsky N, Lupfer C, Kanneganti TD, et al. The ketone
metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated
inflammatory disease. Nat Med. 2015;21(3):263–9.

232. Kossoff EH, Zupec-Kania BA, Amark PE, Ballaban-Gil KR, Christina Bergqvist
AG, Blackford R, Buchhalter JR, Caraballo RH, Helen Cross J, Dahlin MG, et al.
Optimal clinical management of children receiving the ketogenic diet:
recommendations of the International Ketogenic Diet Study Group.
Epilepsia. 2009;50(2):304–17.

233. Jang HJ, Boo HJ, Lee HJ, Min HY, Lee HY. Chronic Stress Facilitates Lung
Tumorigenesis by Promoting Exocytosis of IGF2 in Lung Epithelial Cells.
Cancer Res. 2016;76(22):6607–19.

234. Feng Z, Liu L, Zhang C, Zheng T, Wang J, Lin M, Zhao Y, Wang X, Levine AJ,
Hu W. Chronic restraint stress attenuates p53 function and promotes
tumorigenesis. Proc Natl Acad Sci U S A. 2012;109(18):7013–8.

235. Rush SE, Sharma M. Mindfulness-Based Stress Reduction as a Stress
Management Intervention for Cancer Care: A Systematic Review. J Evid
Based Complementary Altern Med. 2014;19:271–86.

236. Lopes-Junior LC, Bomfim EO, Nascimento LC, Nunes MD, Pereira-da-Silva G,
Lima RA. Non-pharmacological interventions to manage fatigue and
psychological stress in children and adolescents with cancer: an integrative
review. Eur J Cancer Care (Engl). 2016;25(6):921–35.

237. Bradt J, Dileo C, Magill L, Teague A. Music interventions for improving
psychological and physical outcomes in cancer patients. Cochrane Database
Syst Rev. 2016;8:CD006911.

238. Levin GT, Greenwood KM, Singh F, Tsoi D, Newton RU. Exercise Improves
Physical Function and Mental Health of Brain Cancer Survivors: Two
Exploratory Case Studies. Integr Cancer Ther. 2016;15(2):190–6.

239. Ari C, Kovacs Z, Juhasz G, Murdun C, Goldhagen CR, Koutnik AM, Poff AM,
Kesl SL, D’Agostino DP. Exogenous Ketone Supplements Reduce Anxiety-
Related Behavior in Sprague–Dawley and Wistar Albino Glaxo/Rijswijk Rats.
Front Mol Neurosci. 2016;9:137.

240. Meynet O, Ricci JE. Caloric restriction and cancer: molecular mechanisms
and clinical implications. Trends Mol Med. 2014;20(8):419–27.

241. De Lorenzo MS, Baljinnyam E, Vatner DE, Abarzua P, Vatner SF, Rabson AB.
Caloric restriction reduces growth of mammary tumors and metastases.
Carcinogenesis. 2011;32(9):1381–7.

242. Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical
applications. Cell Metab. 2014;19(2):181–92.

243. Al-Wahab Z, Tebbe C, Chhina J, Dar SA, Morris RT, Ali-Fehmi R, Giri S,
Munkarah AR, Rattan R. Dietary energy balance modulates ovarian cancer
progression and metastasis. Oncotarget. 2014;5(15):6063–75.

244. Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, Cohen P, Longo VD.
Fasting and cancer treatment in humans: A case series report. Aging
(Albany NY). 2009;1(12):988–1007.

245. Raffaghello L, Lee C, Safdie FM, Wei M, Madia F, Bianchi G, Longo VD.
Starvation-dependent differential stress resistance protects normal but not
cancer cells against high-dose chemotherapy. Proc Natl Acad Sci U S A.
2008;105(24):8215–20.

246. Raffaghello L, Safdie F, Bianchi G, Dorff T, Fontana L, Longo VD. Fasting and
differential chemotherapy protection in patients. Cell Cycle. 2010;9(22):4474–6.

247. Marsh J, Mukherjee P, Seyfried TN. Drug/diet synergy for managing
malignant astrocytoma in mice: 2-deoxy-D-glucose and the restricted
ketogenic diet. Nutr Metab (Lond). 2008;5:33.

248. Williams DS, Cash A, Hamadani L, Diemer T. Oxaloacetate supplementation
increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-
dependent pathway. Aging Cell. 2009;8(6):765–8.

249. Farah IO. Differential modulation of intracellular energetics in A549 and
MRC-5 cells. Biomed Sci Instrum. 2007;43:110–5.

250. Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer
treatment. Oncogene. 2006;25(34):4633–46.

251. Pitter KL, Tamagno I, Alikhanyan K, Hosni-Ahmed A, Pattwell SS, Donnola S,
Dai C, Ozawa T, Chang M, Chan TA, et al. Corticosteroids compromise
survival in glioblastoma. Brain. 2016;139(Pt 5):1458–71.

252. Seyfried TN, Flores R, Poff AM, D’Agostino DP, Mukherjee P. Metabolic
therapy: a new paradigm for managing malignant brain cancer. Cancer Lett.
2015;356(2 Pt A):289–300.

Seyfried et al. Nutrition & Metabolism  (2017) 14:19 Page 16 of 17



253. Seyfried TN, Shelton LM, Mukherjee P. Does the existing standard of care
increase glioblastoma energy metabolism? Lancet Oncol. 2010;11(9):811–3.

254. Moen I, Stuhr LE. Hyperbaric oxygen therapy and cancer–a review. Target
Oncol. 2012;7(4):233–42.

255. Kohshi K, Beppu T, Tanaka K, Ogawa K, Inoue O, Kukita I, Clarke RE. Potential
roles of hyperbaric oxygenation in the treatments of brain tumors. UHM.
2013;40(4):351–62.

256. Poff AM, Kernagis D, D’Agostino DP. Hyperbaric Environment: Oxygen
and Cellular Damage versus Protection. Comp Physiology. 2017;
7(January 2017):213–34.

257. D’Agostino DP, Colomb Jr DG, Dean JB. Effects of hyperbaric gases on
membrane nanostructure and function in neurons. J Appl Physiol. 2009;
106(3):996–1003.

258. Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q. High-dose
parenteral ascorbate enhanced chemosensitivity of ovarian cancer and
reduced toxicity of chemotherapy. Sci Transl Med. 2014;6(222):222ra218.

259. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E,
Maguire C, Gammer TL, Mackey JR, Fulton D, et al. Metabolic modulation of
glioblastoma with dichloroacetate. Sci Transl Med. 2010;2(31):31ra34.

260. Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, Murray AJ,
Stubbs B, West J, McLure SW, et al. Nutritional Ketosis Alters Fuel
Preference and Thereby Endurance Performance in Athletes. Cell Metab.
2016;24(2):256–68.

261. Murray AJ, Knight NS, Cole MA, Cochlin LE, Carter E, Tchabanenko K,
Pichulik T, Gulston MK, Atherton HJ, Schroeder MA, et al. Novel ketone
diet enhances physical and cognitive performance. FASEB J. 2016;30(12):
4021–32.

262. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim
I, Daikhin E, Yudkoff M, McMahon SB, et al. Myc regulates a transcriptional
program that stimulates mitochondrial glutaminolysis and leads to
glutamine addiction. Proc Natl Acad Sci U S A. 2008;105(48):18782–7.

263. Reitzer LJ, Wice BM, Kennell D. Evidence that glutamine, not sugar, is
the major energy source for cultured HeLa cells. J Biol Chem. 1979;
254(8):2669–76.

264. Dang CV. Glutaminolysis: supplying carbon or nitrogen or both for cancer
cells? Cell Cycle. 2010;9(19):3884–6.

265. Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, Carlin
SD, La Rocca G, Lyashchenko S, Ploessl K, et al. Glutamine-based PET
imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci
Transl Med. 2015;7(274):274ra217.

266. Mueller C, Al-Batran S, Jaeger E, Schmidt B, Bausch M, Unger C, Sethuraman
N. A phase IIa study of PEGylated glutaminase (PEG-PGA) plus 6-diazo-5-
oxo-L-norleucine (DON) in patients with advanced refractory solid tumors. J
Clin Oncol. 2008;26:2533. In: ASCO.

267. Chakrabarti G, Moore ZR, Luo X, Ilcheva M, Ali A, Padanad M, Zhou Y, Xie Y,
Burma S, Scaglioni PP, et al. Targeting glutamine metabolism sensitizes
pancreatic cancer to PARP-driven metabolic catastrophe induced by ss-
lapachone. Cancer & metabolism. 2015;3:12.

268. Mates JM, Segura JA, Campos-Sandoval JA, Lobo C, Alonso L, Alonso FJ,
Marquez J. Glutamine homeostasis and mitochondrial dynamics. Int J
Biochem Cell Biol. 2009;41(10):2051–61.

269. Michalak KP, Mackowska-Kedziora A, Sobolewski B, Wozniak P. Key Roles of
Glutamine Pathways in Reprogramming the Cancer Metabolism. Oxid Med
Cell Longev. 2015;2015:964321.

270. Huysentruyt LC, Mukherjee P, Banerjee D, Shelton LM, Seyfried TN.
Metastatic cancer cells with macrophage properties: evidence from a new
murine tumor model. Int J Cancer. 2008;123(1):73–84.

271. Shelton LM, Mukherjee P, Huysentruyt LC, Urits I, Rosenberg JA, Seyfried TN.
A novel pre-clinical in vivo mouse model for malignant brain tumor growth
and invasion. J Neurooncol. 2010;99(2):165–76.

272. Huysentruyt LC, Shelton LM, Seyfried TN. Influence of methotrexate and
cisplatin on tumor progression and survival in the VM mouse model of
systemic metastatic cancer. Int J Cancer. 2010;126(1):65–72.

273. Hamilton JD, Rapp M, Schneiderhan T, Sabel M, Hayman A, Scherer A, Kropil
P, Budach W, Gerber P, Kretschmar U, et al. Glioblastoma multiforme
metastasis outside the CNS: three case reports and possible mechanisms of
escape. J Clin Oncol. 2014;32(22):e80–84.

274. Hoffman HJ, Duffner PK. Extraneural metastases of central nervous system
tumors. Cancer. 1985;56(7 Suppl):1778–82.

275. Xu M, Wang Y, Xu J, Yao Y, Yu WX, Zhong P. Extensive Therapies for
Extraneural Metastases from Glioblastoma, as Confirmed with the OncoScan
Assay. World Neurosurg. 2016;90:698 e697–11.

276. Yasuhara T, Tamiya T, Meguro T, Ichikawa T, Sato Y, Date I, Nakashima H,
Ohmoto T. Glioblastoma with metastasis to the spleen–case report. Neurol
Med Chir (Tokyo). 2003;43(9):452–6.

277. Kalokhe G, Grimm SA, Chandler JP, Helenowski I, Rademaker A, Raizer JJ.
Metastatic glioblastoma: case presentations and a review of the literature. J
Neurooncol. 2012;107(1):21–7.

278. Huysentruyt LC, Akgoc Z, Seyfried TN. Hypothesis: are neoplastic
macrophages/microglia present in glioblastoma multiforme? ASN neuro.
2011;3(4):AN20110011.

279. Newsholme P. Why is L-glutamine metabolism important to cells of the
immune system in health, postinjury, surgery or infection? J Nutr. 2001;
131(9 Supp):2515–2522S. discussion 2523S-2514S.

280. Shelton LM, Huysentruyt LC, Mukherjee P, Seyfried TN. Calorie restriction as
an anti-invasive therapy for malignant brain cancer in the VM mouse. ASN
neuro. 2010;2(3):e00038.

281. Seyfried TN. Metabolic management of cancer. In: Cancer as a Metabolic
Disease: On the Origin, Management, and Prevention of Cancer. edn.
Hoboken: Wiley; 2012. p. 291–354.

282. Arismendi-Morillo G. Electron microscopy morphology of the mitochondrial
network in human cancer. Int J Biochem Cell Biol. 2009;41(10):2062–8.

283. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M,
Cipolat S, Costa V, Casarin A, Gomes LC, et al. Mitochondrial cristae shape
determines respiratory chain supercomplexes assembly and respiratory
efficiency. Cell. 2013;155(1):160–71.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Seyfried et al. Nutrition & Metabolism  (2017) 14:19 Page 17 of 17


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	The origin of cancer

	Methods
	Aerobic fermentation: a common metabolic malady of tumor cells
	Amino acid fermentation could also drive cancer metabolism
	Tumor cell energy metabolites from cannibalism and phagocytosis
	Genome integrity and energy metabolism
	Human evolution and adaptive versatility

	Results
	Press-pulse: a therapeutic strategy for the gradual elimination of cancer cells
	Calorie restriction and restricted Ketogenic diets: a press disturbance
	Psychological stress reduction: a press disturbance
	Restricted ketogenic diet used with 2-Deoxyglucose
	Ketogenic diet used with radiation therapy
	A Ketogenic diet used with hyperbaric oxygen therapy
	Calorie restriction used with glutamine targeting for metastatic cancer
	Optimization of scheduling, timing, and dosing

	Discussion & Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and material
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

